skip to main content


Title: Enhancing Maneuverability via Gait Design
The gaits of locomoting systems are typically designed to maximize some sort of efficiency, such as cost of transport or speed. Equally important is the ability to modulate such a gait to effect turning maneuvers. For drag-dominated systems, geometric mechanics provides an elegant and practical framework for both ends—gait design and gait modulation. Within this framework, “constraint curvature” maps can be used to approximate the net displacement of robotic systems over cyclic gaits. Gait optimization is made possible under a previously reported “soap-bubble” algorithm. In this work, we propose both local and global gait morphing algorithms to modify a nominal gait to provide single-parameter steering control. Using a simplified swimmer, we numerically compare the two approaches and show that for modest turns, the local approach, while suboptimal, nevertheless proves effective for steering control. A potential advantage of the local approach is that it can be readily applied to soft robots or other systems where local approximations to the constraint curvature can be garnered from data, but for which obtaining an exact global model is infeasible.  more » « less
Award ID(s):
1830893 1653220
NSF-PAR ID:
10352192
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Conference on Robotics and Automation
Page Range / eLocation ID:
5799 to 5805
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Robotic locomotion community is interested in optimal gaits for control. Based on the optimization criterion, however, there could be a number of possible optimal gaits. For example, the optimal gait for maximizing displacement with respect to cost is quite different from the maximum displacement optimal gait. Beyond these two general optimal gaits, we believe that the optimal gait should deal with various situations for high-resolution of motion planning, e.g., steering the robot or moving in “baby steps.” As the step size or steering ratio increases or decreases, the optimal gaits will slightly vary by the geometric relationship and they will form the families of gaits. In this paper, we explored the geometrical framework across these optimal gaits having different step sizes in the family via the Lagrange multiplier method. Based on the structure, we suggest an optimal locus generator that solves all related optimal gaits in the family instead of optimizing each gait respectively. By applying the optimal locus generator to two simplified swimmers in drag-dominated environments, we verify the behavior of the optimal locus generator. 
    more » « less
  2. null (Ed.)
    This paper systematically decomposes a quadrupedal robot into bipeds to rapidly generate walking gaits and then recomposes these gaits to obtain quadrupedal locomotion. We begin by decomposing the full-order, nonlinear and hybrid dynamics of a three-dimensional quadrupedal robot, including its continuous and discrete dynamics, into two bipedal systems that are subject to external forces. Using the hybrid zero dynamics (HZD) framework, gaits for these bipedal robots can be rapidly generated (on the order of seconds) along with corresponding controllers. The decomposition is achieved in such a way that the bipedal walking gaits and controllers can be composed to yield dynamic walking gaits for the original quadrupedal robot - the result is the rapid generation of dynamic quadruped gaits utilizing the full-order dynamics. This methodology is demonstrated through the rapid generation (3.96 seconds on average) of four stepping-in-place gaits and one diagonally symmetric ambling gait at 0.35 m/s on a quadrupedal robot - the Vision 60, with 36 state variables and 12 control inputs - both in simulation and through outdoor experiments. This suggested a new approach for fast quadrupedal trajectory planning using full-body dynamics, without the need for empirical model simplification, wherein methods from dynamic bipedal walking can be directly applied to quadrupeds. 
    more » « less
  3. Traditional geometric mechanics models used in locomotion analysis rely heavily on systems having symmetry in SE(2) (i.e., the dynamics and constraints are invariant with respect to a system’s position and orientation) to simplify motion planning. As a result, the symmetry assumption prevents locomotion analysis on non-flat surfaces because the system dynamics may vary as a function of position and orientation. In this paper, we develop geometric motion planning strategies for a mobile system moving on a position space whose manifold structure is a cylinder: constant non-zero curvature in one dimension and zero curvature in another. To handle this non-flat position space, we adapt conventional geometric mechanics tools - in particular the system connection and the constraint curvature function - to depend on the system orientation. In addition, we introduce a novel constraint projection method to a variational gait optimizer and demonstrate how to design gaits that allow the example system to move on the cylinder with optimal efficiency. 
    more » « less
  4. null (Ed.)
    Can we design motion primitives for complex legged systems uniformly for different terrain types without neglecting modeling details? This paper presents a method for rapidly generating quadrupedal locomotion on sloped terrains-from modeling to gait generation, to hardware demonstration. At the core of this approach is the observation that a quadrupedal robot can be exactly decomposed into coupled bipedal robots. Formally, this is represented through the framework of coupled control systems, wherein isolated subsystems interact through coupling constraints. We demonstrate this concept in the context of quadrupeds and use it to reduce the gait planning problem for uneven terrains to bipedal walking generation via hybrid zero dynamics. This reduction method allows for the formulation of a nonlinear optimization problem that leverages low-dimensional bipedal representations to generate dynamic walking gaits on slopes for the full-order quadrupedal robot dynamics. The result is the ability to rapidly generate quadrupedal walking gaits on a variety of slopes. We demonstrate these walking behaviors on the Vision 60 quadrupedal robot; in simulation, via walking on a range of sloped terrains of 13°, 15°, 20°, 25°, and, experimentally, through the successful locomotion of 13° and 20° ~ 25° sloped outdoor grasslands. 
    more » « less
  5. In this paper, we present a set of geometric princi- ples for understanding and optimizing the gaits of drag-dominated kinematic locomoting systems. For systems with two shape vari- ables, the dynamics of gait optimization are analogous to the pro- cess by which internal pressure and surface tension combine to produce the shape and size of a soap bubble. The internal pres- sure on the gait curve is provided by the flux of the curvature of the system constraints passing through the surface bounded by the gait, and surface tension is provided by the cost associated with ex- ecuting the gait, which when executed at optimal (constant-power) pacing is proportional to its pathlength measured under a Rie- mannian metric. We extend these principles to work on systems with three and then more than three shape variables. We demon- strate these principles on a variety of system geometries (including Purcell’s swimmer) and for optimization criteria that include max- imizing displacement and efficiency of motion for both translation and turning motions. We also demonstrate how these principles can be used to simultaneously optimize a system’s gait kinematics and physical design. 
    more » « less