skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Blanco DECam Bulge Survey (BDBS): V. Cleaning the foreground populations from Galactic bulge colour-magnitude diagrams using Gaia EDR3
Aims. The Blanco DECam Bulge Survey (BDBS) has imaged more than 200 square degrees of the southern Galactic bulge, providing photometry in the ugrizy filters for ∼250 million unique stars. The presence of a strong foreground disk population, along with complex reddening and extreme image crowding, has made it difficult to constrain the presence of young and intermediate age stars in the bulge population. Methods. We employed an accurate cross-match of BDBS with the latest data release (EDR3) from the Gaia mission, matching more than 140 million sources with BDBS photometry and Gaia EDR3 photometry and astrometry. We relied on Gaia EDR3 astrometry, without any photometric selection, to produce clean BDBS bulge colour-magnitude diagrams (CMDs). Gaia parallaxes were used to filter out bright foreground sources, and a Gaussian mixture model fit to Galactic proper motions could identify stars kinematically consistent with bulge membership. We applied this method to 127 different bulge fields of 1 deg 2 each, with | ℓ | ≤ 9.5° and −9.5° ≤ b  ≤ −2.5°. Results. The astrometric cleaning procedure removes the majority of blue stars in each field, especially near the Galactic plane, where the ratio of blue to red stars is ≲10%, increasing to values ∼20% at higher Galactic latitudes. We rule out the presence of a widespread population of stars younger than 2 Gyr. The vast majority of blue stars brighter than the turnoff belong to the foreground population, according to their measured astrometry. We introduce the distance between the observed red giant branch bump and the red clump as a simple age proxy for the dominant population in the field, and we confirm the picture of a predominantly old bulge. Further work is needed to apply the method to estimate ages to fields at higher latitudes, and to model the complex morphology of the Galactic bulge. We also produce transverse kinematic maps, recovering expected patterns related to the presence of the bar and of the X-shaped nature of the bulge.  more » « less
Award ID(s):
2009836
PAR ID:
10352243
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
664
ISSN:
0004-6361
Page Range / eLocation ID:
A124
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context.The inner Galaxy is a complex environment, and the relative contributions of different formation scenarios to its observed morphology and stellar properties are still debated. The different components are expected to have different spatial, kinematic, and metallicity distributions, and a combination of photometric, spectroscopic, and astrometric large-scale surveys is needed to study the formation and evolution of the Galactic bulge. Aims.The Blanco DECam Bulge Survey (BDBS) provides near-ultraviolet to near-infrared photometry for approximately 250 million unique stars over more than 200 square degrees of the southern Galactic bulge. By combining BDBS photometry with the latestGaiaastrometry, we aim to characterize the chemodynamics of red clump stars across the BDBS footprint using an unprecedented sample size and sky coverage. Methods.Our field of view of interest is |ℓ| ≤ 10°, −10° ≤b ≤ −3°. We constructed a sample of approximately 2.3 million red clump giants in the bulge with photometric metallicities, BDBS photometric distances, and proper motions. Photometric metallicities are derived from a (u − i)0versus [Fe/H] relation; astrometry, including precise proper motions, is from the third data release (DR3) of the ESA satelliteGaia. We studied the kinematics of the red clump stars as a function of sky position and metallicity by investigating proper-motion rotation curves, velocity dispersions, and proper-motion correlations across the southern Galactic bulge. Results.By binning our sample into eight metallicity bins in the range of −1.5 dex < [Fe/H] < +1 dex, we find that metal-poor red clump stars exhibit lower rotation amplitudes, at ∼29 km s−1kpc−1. The peak of the angular velocity is ∼39 km s−1kpc−1for [Fe/H] ∼ −0.2 dex, exhibiting declining rotation at higher [Fe/H]. The velocity dispersion is higher for metal-poor stars, while metal-rich stars show a steeper gradient with Galactic latitude, with a maximum dispersion at low latitudes along the bulge minor axis. Only metal-rich stars ([Fe/H] ≳ −0.5 dex) show clear signatures of the bar in their kinematics, while the metal-poor population exhibits isotropic motions with an axisymmetric pattern around Galactic longitudeℓ = 0. Conclusions.This work describes the largest sample of bulge stars with distance, metallicity, and astrometry reported to date, and shows clear kinematic differences with metallicity. The global kinematics over the bulge agrees with earlier studies. However, we see striking changes with increasing metallicity, and, for the first time, kinematic differences for stars with [Fe/H]>  − 0.5, suggesting that the bar itself may have kinematics that depends on metallicity. 
    more » « less
  2. Abstract We present wide-field, high resolution maps of the color excess for 14 globular clusters toward the Southern Galactic bulge. The maps were derived using Gaia EDR3 astrometry and stellar photometry from the Blanco DECam Bulge Survey, which is a deep, wide-field ugriz Y photometric survey of the southern Galactic bulge. Comparisons with WISE 12 μ m images of thermal continuum emission demonstrate that the maps presented here trace interstellar extinction by dust down to 5″ scales. We use the reddening-corrected photometry of proper motion-selected cluster stars to build color–magnitude diagrams for the target globular clusters, which show residual broadening in excess of that expected from the photometric errors alone. This residual broadening is likely to be driven by star-to-star elemental abundance variations. 
    more » « less
  3. Abstract We present photometric evidence for multiple stellar populations (MPs) in 14 globular clusters (GCs) toward the southern Galactic bulge. The photometric data come as part of the Blanco DECam Bulge Survey, which is a deep, wide-field near-UV-near-IR ( ugriz Y) survey of the southern Galactic bulge. Here, we present the first systematic study of bulge GC multiple populations with deep photometry including the u band, which is a crucial indicator of the abundance of CNO-bearing molecules in stellar atmospheres. We identify cluster members using Gaia EDR3 proper motion measurements, and then isolate red giant branch stars using r versus u − r color–magnitude diagrams. We find evidence suggesting all 14 clusters host at least two populations, and NGC 6441, NGC 6626, and NGC 6656 appear to have at least three populations. Many of these clusters are not part of the Hubble Space Telescope (HST) surveys nor do they have comprehensive spectroscopic analyses so we are presenting the first evidence of MPs in several clusters. Not only do we find a strong anticorrelation between the fraction of first-generation stars and cluster absolute V magnitude, but the correlation coefficient and cluster-to-cluster scatter are similar to the results obtained from HST. Our ground-based data extend to much larger radial distances than similar HST observations, enabling a reliable estimate of the global fraction of first-generation stars in each cluster. This study demonstrates that ground-based u -band photometry as provided by DECam will prove powerful in the study of multiple populations in resolved GCs. 
    more » « less
  4. null (Ed.)
    ABSTRACT Until the recent advent of Gaia Data Release 2 (DR2) and deep multi-object spectroscopy, it has been difficult to obtain 6D phase space information for large numbers of stars beyond 4 kpc, in particular towards the Galactic Centre, where dust and crowding are significant. We combine line-of-sight velocities from the Abundances and Radial velocity Galactic Origins Survey (ARGOS) with proper motions from Gaia DR2 to obtain a sample of ∼7000 red clump stars with 3D velocities. We perform a large-scale stellar kinematics study of the Milky Way bulge to characterize the bulge velocity ellipsoids in 20 fields. The tilt of the major-axis of the velocity ellipsoid in the radial-longitudinal velocity plane, or vertex deviation, is characteristic of non-axisymmetric systems and a significant tilt is a robust indicator of non-axisymmetry or bar presence. We compare the observations to the predicted kinematics of an N-body boxy-bulge model formed from dynamical instabilities. In the model, the lv values are strongly correlated with the angle (α) between the bulge major-axis and the Sun-Galactic centre line of sight. We use a maximum likelihood method to obtain an independent measurement of α, from bulge stellar kinematics alone, performing a robust error analysis. The most likely value of α given our model is α = (29 ± 3)○, with an additional systematic uncertainty due to comparison with one specific model. In Baade’s window, the metal-rich stars display a larger vertex deviation (lv = −40○) than the metal-poor stars (lv = 10○) but we do not detect significant lv−metallicity trends in the other fields. 
    more » « less
  5. We investigate the inner regions of the Milky Way using data from APOGEE and Gaia EDR3. Our inner Galactic sample has more than 26 500 stars within | X Gal |< 5 kpc, | Y Gal |< 3.5 kpc, | Z Gal |< 1 kpc, and we also carry out the analysis for a foreground-cleaned subsample of 8000 stars that is more representative of the bulge–bar populations. These samples allow us to build chemo-dynamical maps of the stellar populations with vastly improved detail. The inner Galaxy shows an apparent chemical bimodality in key abundance ratios [ α /Fe], [C/N], and [Mn/O], which probe different enrichment timescales, suggesting a star formation gap (quenching) between the high- and low- α populations. Using a joint analysis of the distributions of kinematics, metallicities, mean orbital radius, and chemical abundances, we can characterize the different populations coexisting in the innermost regions of the Galaxy for the first time. The chemo-kinematic data dissected on an eccentricity–| Z | max plane reveal the chemical and kinematic signatures of the bar, the thin inner disc, and an inner thick disc, and a broad metallicity population with large velocity dispersion indicative of a pressure-supported component. The interplay between these different populations is mapped onto the different metallicity distributions seen in the eccentricity–| Z | max diagram consistently with the mean orbital radius and V ϕ distributions. A clear metallicity gradient as a function of | Z | max is also found, which is consistent with the spatial overlapping of different populations. Additionally, we find and chemically and kinematically characterize a group of counter-rotating stars that could be the result of a gas-rich merger event or just the result of clumpy star formation during the earliest phases of the early disc that migrated into the bulge. Finally, based on 6D information, we assign stars a probability value of being on a bar orbit and find that most of the stars with large bar orbit probabilities come from the innermost 3 kpc, with a broad dispersion of metallicity. Even stars with a high probability of belonging to the bar show chemical bimodality in the [ α /Fe] versus [Fe/H] diagram. This suggests bar trapping to be an efficient mechanism, explaining why stars on bar orbits do not show a significant, distinct chemical abundance ratio signature. 
    more » « less