skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Joint Hypoglycemia Prediction and Glucose Forecasting via Deep Multi-Task Learning
We present a multitask learning approach to the problem of hypoglycemia (HG) prediction in diabetes. The approach is based on a state-of-the-art time series forecasting model, N-BEATS, and extends it by adding a classification task so that the model performs both glucose forecasting (i.e., predicting future glucose values) and HG prediction (i.e., probability of future HG events sometime within the prediction horizon). We also propose an alternative loss function that penalizes forecasting errors in the HG range. We evaluate the approach on a dataset containing over 1.6M recordings from 112 patients with type 1 diabetes who wore a continuous glucose monitor (CGM) for 90 days. Our results show that the classification branch significantly outperforms the forecasting branch on the problem of HG prediction, and that the new loss function is more effective at reducing forecasting errors in the HG range than multi-task learning.  more » « less
Award ID(s):
2037383
PAR ID:
10352263
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Page Range / eLocation ID:
1136 to 1140
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background Blood glucose (BG) management is crucial for type-1 diabetes patients resulting in the necessity of reliable artificial pancreas or insulin infusion systems. In recent years, deep learning techniques have been utilized for a more accurate BG level prediction system. However, continuous glucose monitoring (CGM) readings are susceptible to sensor errors. As a result, inaccurate CGM readings would affect BG prediction and make it unreliable, even if the most optimal machine learning model is used. Methods In this work, we propose a novel approach to predicting blood glucose level with a stacked Long short-term memory (LSTM) based deep recurrent neural network (RNN) model considering sensor fault. We use the Kalman smoothing technique for the correction of the inaccurate CGM readings due to sensor error. Results For the OhioT1DM (2018) dataset, containing eight weeks’ data from six different patients, we achieve an average RMSE of 6.45 and 17.24 mg/dl for 30 min and 60 min of prediction horizon (PH), respectively. Conclusions To the best of our knowledge, this is the leading average prediction accuracy for the ohioT1DM dataset. Different physiological information, e.g., Kalman smoothed CGM data, carbohydrates from the meal, bolus insulin, and cumulative step counts in a fixed time interval, are crafted to represent meaningful features used as input to the model. The goal of our approach is to lower the difference between the predicted CGM values and the fingerstick blood glucose readings—the ground truth. Our results indicate that the proposed approach is feasible for more reliable BG forecasting that might improve the performance of the artificial pancreas and insulin infusion system for T1D diabetes management. 
    more » « less
  2. Neural networks present a useful framework for learning complex dynamics, and are increasingly being considered as components to closed loop predictive control algorithms. However, if they are to be utilized in such safety-critical advisory settings, they must be provably "conformant" to the governing scientific (biological, chemical, physical) laws which underlie the modeled process. Unfortunately, this is not easily guaranteed as neural network models are prone to learn patterns which are artifacts of the conditions under which the training data is collected, which may not necessarily conform to underlying physiological laws. In this work, we utilize a formal range-propagation based approach for checking whether neural network models for predicting future blood glucose levels of individuals with type-1 diabetes are monotonic in terms of their insulin inputs. These networks are increasingly part of closed loop predictive control algorithms for "artificial pancreas" devices which automate control of insulin delivery for individuals with type-1 diabetes. Our approach considers a key property that blood glucose levels must be monotonically decreasing with increasing insulin inputs to the model. Multiple representative neural network models for blood glucose prediction are trained and tested on real patient data, and conformance is tested through our verification approach. We observe that standard approaches to training networks result in models which violate the core relationship between insulin inputs and glucose levels, despite having high prediction accuracy. We propose an approach that can learn conformant models without much loss in accuracy. 
    more » « less
  3. The problem of real time prediction of blood glucose (BG) levels based on the readings from a continuous glucose monitoring (CGM) device is a problem of great importance in diabetes care, and therefore, has attracted a lot of research in recent years, especially based on machine learning. An accurate prediction with a 30, 60, or 90 min prediction horizon has the potential of saving millions of dollars in emergency care costs. In this paper, we treat the problem as one of function approximation, where the value of the BG level at time t + h (where h the prediction horizon) is considered to be an unknown function of d readings prior to the time t . This unknown function may be supported in particular on some unknown submanifold of the d -dimensional Euclidean space. While manifold learning is classically done in a semi-supervised setting, where the entire data has to be known in advance, we use recent ideas to achieve an accurate function approximation in a supervised setting; i.e., construct a model for the target function. We use the state-of-the-art clinically relevant PRED-EGA grid to evaluate our results, and demonstrate that for a real life dataset, our method performs better than a standard deep network, especially in hypoglycemic and hyperglycemic regimes. One noteworthy aspect of this work is that the training data and test data may come from different distributions. 
    more » « less
  4. Few-shot machine learning attempts to predict outputs given only a very small number of training examples. The key idea behind most few-shot learning approaches is to pre-train the model with a large number of instances from a different but related class of data, classes for which a large number of instances are available for training. Few-shot learning has been most successfully demonstrated for classification problems using Siamese deep learning neural networks. Few-shot learning is less extensively applied to time-series forecasting. Few-shot forecasting is the task of predicting future values of a time-series even when only a small set of historic time-series is available. Few-shot forecasting has applications in domains where a long history of data is not available. This work describes deep neural network architectures for few-shot forecasting. All the architectures use a Siamese twin network approach to learn a difference function between pairs of time-series, rather than directly forecasting based on historical data as seen in traditional forecasting models. The networks are built using Long short-term memory units (LSTM). During forecasting, a model is able to forecast time-series types that were never seen in the training data by using the few available instances of the new time-series type as reference inputs. The proposed architectures are evaluated on Vehicular traffic data collected in California from the Caltrans Performance Measurement System (PeMS). The models were trained with traffic flow data collected at specific locations and then are evaluated by predicting traffic at different locations at different time horizons (0 to 12 hours). The Mean Absolute Error (MAE) was used as the evaluation metric and also as the loss function for training. The proposed architectures show lower prediction error than a baseline nearest neighbor forecast model. The prediction error increases at longer time horizons. 
    more » « less
  5. In this paper, we provide an approach to data-driven control for artificial pancreas systems by learning neural network models of human insulin-glucose physiology from available patient data and using a mixed integer optimization approach to control blood glucose levels in real-time using the inferred models. First, our approach learns neural networks to predict the future blood glucose values from given data on insulin infusion and their resulting effects on blood glucose levels. However, to provide guarantees on the resulting model, we use quantile regression to fit multiple neural networks that predict upper and lower quantiles of the future blood glucose levels, in addition to the mean. Using the inferred set of neural networks, we formulate a model-predictive control scheme that adjusts both basal and bolus insulin delivery to ensure that the risk of harmful hypoglycemia and hyperglycemia are bounded using the quantile models while the mean prediction stays as close as possible to the desired target. We discuss how this scheme can handle disturbances from large unannounced meals as well as infeasibilities that result from situations where the uncertainties in future glucose predictions are too high. We experimentally evaluate this approach on data obtained from a set of 17 patients over a course of 40 nights per patient. Furthermore, we also test our approach using neural networks obtained from virtual patient models available through the UVA-Padova simulator for type-1 diabetes. 
    more » « less