skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Eighteen-year record of circum-Antarctic landfast-sea-ice distribution allows detailed baseline characterisation and reveals trends and variability
Abstract. Landfast sea ice (fast ice) is an important though poorly understood component of the cryosphere on the Antarctic continental shelf, where it plays a key role in atmosphere–ocean–ice-sheet interaction and coupled ecological and biogeochemical processes. Here, we present a first in-depth baseline analysis of variability and change in circum-Antarctic fast-ice distribution (including its relationship to bathymetry), based on a new high-resolution satellite-derived time series for the period 2000 to 2018. This reveals (a) an overall trend of -882±824 km2 yr−1 (-0.19±0.18 % yr−1) and (b) eight distinct regions in terms of fast-ice coverage and modes of formation. Of these, four exhibit positive trends over the 18-year period and four negative. Positive trends are seen in East Antarctica and in the Bellingshausen Sea, with this region claiming the largest positive trend of +1198±359 km2 yr−1 (+1.10±0.35 % yr−1). The four negative trends predominantly occur in West Antarctica, with the largest negative trend of -1206±277 km2 yr−1 (-1.78±0.41 % yr−1) occurring in the Victoria and Oates Land region in the western Ross Sea. All trends are significant. This new baseline analysis represents a significant advance in our knowledge of the current state of both the global cryosphere and the complex Antarctic coastal system, which are vulnerable to climate variability and change. It will also inform a wide range of other studies.  more » « less
Award ID(s):
1745089
PAR ID:
10352299
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Cryosphere
Volume:
15
Issue:
11
ISSN:
1994-0424
Page Range / eLocation ID:
5061 to 5077
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Antarctic sea ice extent (SIE) has slightly increased over the satellite observational period (1979 to the present) despite global warming. Several mechanisms have been invoked to explain this trend, such as changes in winds, precipitation, or ocean stratification, yet there is no widespread consensus. Additionally, fully coupled Earth system models run under historic and anthropogenic forcing generally fail to simulate positive SIE trends over this time period. In this work, we quantify the role of winds and Southern Ocean SSTs on sea ice trends and variability with an Earth system model run under historic and anthropogenic forcing that nudges winds over the polar regions and Southern Ocean SSTs north of the sea ice to observations from 1979 to 2018. Simulations with nudged winds alone capture the observed interannual variability in SIE and the observed long-term trends from the early 1990s onward, yet for the longer 1979–2018 period they simulate a negative SIE trend, in part due to faster-than-observed warming at the global and hemispheric scale in the model. Simulations with both nudged winds and SSTs show no significant SIE trends over 1979–2018, in agreement with observations. At the regional scale, simulated sea ice shows higher skill compared to the pan-Antarctic scale both in capturing trends and interannual variability in all nudged simulations. We additionally find negligible impact of the initial conditions in 1979 on long-term trends. 
    more » « less
  2. Abstract Understanding the variability of Antarctic sea ice is an ongoing challenge given the limitations of observed data. Coupled climate model simulations present the opportunity to examine this variability in Antarctic sea ice. Here, the daily sea ice extent simulated by the newly released National Center for Atmospheric Research (NCAR) Community Eart h System Model Version 2 (CESM2) for the historical period (1979–2014) is compared to the satellite‐observed daily sea ice extent for the same period. The comparisons are made using a newly developed suite of statistical metrics that estimates the variability of the sea ice extent on timescales ranging from the long‐term decadal to the short term, intraday scales. Assessed are the annual cycle, trend, day‐to‐day change, and the volatility, a new statistic that estimates the variability at the daily scale. Results show that the trend in observed daily sea ice is dominated by subdecadal variability with a weak positive linear trend superimposed. The CESM2 simulates comparable subdecadal variability but with a strong negative linear trend superimposed. The CESM2's annual cycle is similar in amplitude to the observed, key differences being the timing of ice advance and retreat. The sea ice begins its advance later, reaches its maximum later and begins retreat later in the CESM2. This is confirmed by the day‐to‐day change. Apparent in all of the sea ice regions, this behavior suggests the influence of the semiannual oscillation of the circumpolar trough. The volatility, which is associated with smaller scale dynamics such as storms, is smaller in the CESM2 than observed. 
    more » « less
  3. Spatial and temporal trends of remotely sensed sea-ice cover, sea surface temperatures, chlorophyll-a concentration and primary production in the Baffin Bay, Davis Strait and Labrador Sea were analyzed for the 1998–2017 period. We found spatial variability in the trends of these cryospheric, biologic and oceanographic phenomena. For example, in the northern Baffin Bay, we observed decreases in annual sea-ice persistence, yet increases along the Labrador Sea-ice edge during winter, with the latter having significant correlations with broader atmospheric patterns. In general, we observed increases in summer sea surface temperatures across the study region, except a small area of cooling along the southern Greenlandic coast. We also found significant negative trends in April chlorophyll-a and primary production followed by significant positive trends for both biological phenomena in May, owing to anomalously high values in 2014 and 2015. Notably, we found a significant positive correlation between days of monthly sea ice presence in April with May primary production quantities. Finally, we found a significant positive trend in total annual primary production over the study period. This novel finding suggests an important relationship between the timing of breakup along the sea-ice edge and peaks in biological production. 
    more » « less
  4. Ice tongues at the fringes of the Antarctic ice sheet lose mass primarily through both basal melting and calving. They are sensitive to ocean conditions which can weaken the ice both mechanically or through thinning. Ice tongues, which are laterally unconfined, are likely to be particularly sensitive to ocean-induced stresses. Here we examine ice tongues in the Western Ross Sea, by looking into the factors affecting their stability. We calculate the basal mass change of twelve Antarctic ice tongues using a flux gate approach, deriving thickness from ICESat-2 height measurements and ice surface velocities from Sentinel-1 feature-tracking over the same period (October 2018 to December 2021). The basal mass balance ranges between −0.14 ± 0.07 m yr −1 and −1.50 ± 1.2 m yr −1 . The average basal mass change for all the ice tongues is −0.82 ± 0.68 m of ice yr −1 . Low values of basal melt suggest a stable mass balance condition in this region, with low thermal ocean forcing, as other studies have shown. We found a heterogeneous basal melt pattern with no latitudinal gradient and no clear driver in basal melt indicating that local variables are important in the persistence of ice tongues in the absence of a strong oceanographic melting force. Moreover, thanks to the temporal resolution of the data we were able to resolve the seasonal variability of Drygalski and Aviator Ice Tongues, the two largest ice tongues studied. 
    more » « less
  5. Abstract. Antarctic sea ice has exhibited significant variability over the satellite record, including a period of prolonged and gradual expansion, as well as a period of sudden decline. A number of mechanisms have been proposed to explain this variability, but how each mechanism manifests spatially and temporally remains poorly understood. Here, we use a statistical method called low-frequency component analysis to analyze the spatiotemporal structure of observed Antarctic sea ice concentration variability. The identified patterns reveal distinct modes of low-frequency sea ice variability. The leading mode, which accounts for the large-scale, gradual expansion of sea ice, is associated with the Interdecadal Pacific Oscillation and resembles the observed sea surface temperature trend pattern that climate models have trouble reproducing. The second mode is associated with the central Pacific El Niño–Southern Oscillation (ENSO) and the Southern Annular Mode and accounts for most of the sea ice variability in the Ross Sea. The third mode is associated with the eastern Pacific ENSO and Amundsen Sea Low and accounts for most of the pan-Antarctic sea ice variability and almost all of the sea ice variability in the Weddell Sea. The third mode is also related to periods of abrupt Antarctic sea ice decline that are associated with a weakening of the circumpolar westerlies, which favors surface warming through a shoaling of the ocean mixed layer and decreased northward Ekman heat transport. Broadly, these results suggest that climate model biases in long-term Antarctic sea ice and large-scale sea surface temperature trends are related to each other and that eastern Pacific ENSO variability is a key ingredient for abrupt Antarctic sea ice changes. 
    more » « less