skip to main content

Title: “Multi-Modulation Scheme for RFID-based Sensor Networks"
RFID technology is playing an increasingly more important role in the Internet of Things, especially in the dense deployment model. In such networks, in addition to communication, nodes may also need to harvest energy from the environment to operate. In particular, we assume that our network model relies on RFID sensor network consisting of Wireless Identification and Sensing Platform (WISP) devices and RFID exciters. In WISP, the sensors harvest ambient energy from the RFID exciters and use this energy for communication back to the exciter. However, as the number of exciters is typically small, sensors further away from an exciter will need longer charging time to be able to transmit the same amount of information than a closer by sensor. Thus, further away sensors limit the overall throughput of the network. In this paper, we propose to use a multi-modulation scheme, which trades off power for transmission duration. More specifically, in this scheme, sensors closer to the exciter use a higher-order modulation, which requires more power than a lower-order modulation assigned to further away sensors, for the same bit error rate of all the sensors’ transmissions. This reduces the transmission time of the closer sensors, while also reducing the charging more » time of the further away sensors, overall increasing the total net-work throughput. The evaluation results show that the RFID sensor network with our multi-modulation scheme has significantly higher throughput as compared with the traditional single-modulation scheme. « less
Authors:
Editors:
Gao, H.; Fan, P.; Wun, J.; Xiaoping, X.; Yu, J.; Wang, Y.
Award ID(s):
1763627
Publication Date:
NSF-PAR ID:
10352311
Journal Name:
Lecture notes of the Institute for Computer Sciences Social Informatics and Telecommunications Engineering
Volume:
352
Page Range or eLocation-ID:
17-36
ISSN:
1867-822X
Sponsoring Org:
National Science Foundation
More Like this
  1. Battery-free sensing devices harvest energy from their surrounding environment to perform sensing, computation, and communication. This enables previously impossible applications in the Internet-of-Things. A core challenge for these devices is maintaining usefulness despite erratic, random or irregular energy availability; which causes inconsistent execution, loss of service and power failures. Adapting execution (degrading or upgrading) seems promising as a way to stave off power failures, meet deadlines, or increase throughput. However, because of constrained resources and limited local information, it is a challenge to decide when would be the best time to adapt, and how exactly to adapt execution. In this paper, we systematically explore the fundamental mechanisms of energy-aware adaptation, and propose heuristic adaptation as a method for modulating the performance of tasks to enable higher sensor coverage, completion rates, or throughput, depending on the application. We build a task based adaptive runtime system for intermittently powered sensors embodying this concept. We complement this runtime with a user facing simulator that enables programmers to conceptualize the tradeoffs they make when choosing what tasks to adapt, and how, relative to real world energy harvesting environment traces. While we target battery-free, intermittently powered sensors, we see general application to all energy harvestingmore »devices. We explore heuristic adaptation with varied energy harvesting modalities and diverse applications: machine learning, activity recognition, and greenhouse monitoring, and find that the adaptive version of our ML app performs up to 46% more classifications with only a 5% drop in accuracy; the activity recognition app captures 76% more classifications with only nominal down-sampling; and find that heuristic adaptation leads to higher throughput versus non-adaptive in all cases.« less
  2. Currently, there is an increasing interest in the use of RFID systems with passive or battery-less tags with sensors incorporated, also known as computational RFID (CRFID) systems. These passive tags use the reader signal to power up their microcontroller and an attached sensor. Following the current standard EPC C1G2, the reader must identify the tag (receive the tag's identification code) prior to receive data from its sensor. In a typical RFID scenario, several sensor tags share the reader interrogation zone, and during their identification process, their responses often collide, increasing their identification time. Therefore, RFID application developers must be mindful of tag anti-collision protocols when dealing with CRFID tags in dense RFID sensor networks. So far, significant effort has been invested in simulation-based analysis of the performance of anti-collision protocols regarding the tags identification time. However, no one has explored the experimental performance of anti-collision protocols in an RFID sensor network using CRFID. This paper: (i) demonstrates that the impact of one tag identification time over the total time required to read one sensor data from that same tag is very significant, and (ii) presents an UHF-SDR RFID system which validates the improvement of FuzzyQ, a fast anticollision protocol, inmore »relation to the protocol used in the current RFID standard.« less
  3. Battery-free sensing devices harvest energy from their surrounding environment to perform sensing, computation, and communication. A core challenge for these devices is maintaining usefulness despite erratic, random, or irregular energy availability, which causes inconsistent execution, loss of service, and power failures. Adapting execution (degrading or upgrading) based on available or predicted power/energy seems promising to stave off power failures, meet deadlines, or increase throughput. However, due to constrained resources and limited local information, deciding what and when exactly to adapt is challenging. This article explores the fundamentals of energy-aware adaptation for intermittently powered computers and proposes heuristic adaptation mechanisms to dynamically modulate the program complexity at run-time to enable higher sensor coverage and throughput. While we target battery-free, intermittently powered, resource-constrained sensors, we see a general application to all energy harvesting devices.
  4. Obeid, I. ; Selesnik, I. ; Picone, J. (Ed.)
    The Neuronix high-performance computing cluster allows us to conduct extensive machine learning experiments on big data [1]. This heterogeneous cluster uses innovative scheduling technology, Slurm [2], that manages a network of CPUs and graphics processing units (GPUs). The GPU farm consists of a variety of processors ranging from low-end consumer grade devices such as the Nvidia GTX 970 to higher-end devices such as the GeForce RTX 2080. These GPUs are essential to our research since they allow extremely compute-intensive deep learning tasks to be executed on massive data resources such as the TUH EEG Corpus [2]. We use TensorFlow [3] as the core machine learning library for our deep learning systems, and routinely employ multiple GPUs to accelerate the training process. Reproducible results are essential to machine learning research. Reproducibility in this context means the ability to replicate an existing experiment – performance metrics such as error rates should be identical and floating-point calculations should match closely. Three examples of ways we typically expect an experiment to be replicable are: (1) The same job run on the same processor should produce the same results each time it is run. (2) A job run on a CPU and GPU should producemore »identical results. (3) A job should produce comparable results if the data is presented in a different order. System optimization requires an ability to directly compare error rates for algorithms evaluated under comparable operating conditions. However, it is a difficult task to exactly reproduce the results for large, complex deep learning systems that often require more than a trillion calculations per experiment [5]. This is a fairly well-known issue and one we will explore in this poster. Researchers must be able to replicate results on a specific data set to establish the integrity of an implementation. They can then use that implementation as a baseline for comparison purposes. A lack of reproducibility makes it very difficult to debug algorithms and validate changes to the system. Equally important, since many results in deep learning research are dependent on the order in which the system is exposed to the data, the specific processors used, and even the order in which those processors are accessed, it becomes a challenging problem to compare two algorithms since each system must be individually optimized for a specific data set or processor. This is extremely time-consuming for algorithm research in which a single run often taxes a computing environment to its limits. Well-known techniques such as cross-validation [5,6] can be used to mitigate these effects, but this is also computationally expensive. These issues are further compounded by the fact that most deep learning algorithms are susceptible to the way computational noise propagates through the system. GPUs are particularly notorious for this because, in a clustered environment, it becomes more difficult to control which processors are used at various points in time. Another equally frustrating issue is that upgrades to the deep learning package, such as the transition from TensorFlow v1.9 to v1.13, can also result in large fluctuations in error rates when re-running the same experiment. Since TensorFlow is constantly updating functions to support GPU use, maintaining an historical archive of experimental results that can be used to calibrate algorithm research is quite a challenge. This makes it very difficult to optimize the system or select the best configurations. The overall impact of all of these issues described above is significant as error rates can fluctuate by as much as 25% due to these types of computational issues. Cross-validation is one technique used to mitigate this, but that is expensive since you need to do multiple runs over the data, which further taxes a computing infrastructure already running at max capacity. GPUs are preferred when training a large network since these systems train at least two orders of magnitude faster than CPUs [7]. Large-scale experiments are simply not feasible without using GPUs. However, there is a tradeoff to gain this performance. Since all our GPUs use the NVIDIA CUDA® Deep Neural Network library (cuDNN) [8], a GPU-accelerated library of primitives for deep neural networks, it adds an element of randomness into the experiment. When a GPU is used to train a network in TensorFlow, it automatically searches for a cuDNN implementation. NVIDIA’s cuDNN implementation provides algorithms that increase the performance and help the model train quicker, but they are non-deterministic algorithms [9,10]. Since our networks have many complex layers, there is no easy way to avoid this randomness. Instead of comparing each epoch, we compare the average performance of the experiment because it gives us a hint of how our model is performing per experiment, and if the changes we make are efficient. In this poster, we will discuss a variety of issues related to reproducibility and introduce ways we mitigate these effects. For example, TensorFlow uses a random number generator (RNG) which is not seeded by default. TensorFlow determines the initialization point and how certain functions execute using the RNG. The solution for this is seeding all the necessary components before training the model. This forces TensorFlow to use the same initialization point and sets how certain layers work (e.g., dropout layers). However, seeding all the RNGs will not guarantee a controlled experiment. Other variables can affect the outcome of the experiment such as training using GPUs, allowing multi-threading on CPUs, using certain layers, etc. To mitigate our problems with reproducibility, we first make sure that the data is processed in the same order during training. Therefore, we save the data from the last experiment and to make sure the newer experiment follows the same order. If we allow the data to be shuffled, it can affect the performance due to how the model was exposed to the data. We also specify the float data type to be 32-bit since Python defaults to 64-bit. We try to avoid using 64-bit precision because the numbers produced by a GPU can vary significantly depending on the GPU architecture [11-13]. Controlling precision somewhat reduces differences due to computational noise even though technically it increases the amount of computational noise. We are currently developing more advanced techniques for preserving the efficiency of our training process while also maintaining the ability to reproduce models. In our poster presentation we will demonstrate these issues using some novel visualization tools, present several examples of the extent to which these issues influence research results on electroencephalography (EEG) and digital pathology experiments and introduce new ways to manage such computational issues.« less
  5. Smart appliances’ run schedule and electric vehicles charging can be managed over a smart grid enabled home area network (HAN) to reduce electricity demand at critical times and add more plug-in electric vehicles to the grid, which eventually lower customers’ energy bills and reduce greenhouse gas emissions. Short range radio-based wireless communication technologies commonly adopted in a HAN are vulnerable to cyber attacks due to their wide interception range. In this work, a low-cost solution is proposed for securing the low-volume data exchange of sensitive tasks (e.g., key management and mutual authentication). Our approach utilizes the emerging concept of retro-reflector based visible light communication (Retro-VLC), where smart appliances, IoT sensors and other electric devices perform the sensitive data exchange with the HAN gateway via the secure Retro-VLC channel. To conduct the feasibility study, a multi-pixel Retro-VLC link is prototyped to enable quadrature amplitude modulation. The bit error rate of Retro-VLC is studied analytically, numerically and experimentally. A heterogeneous Retro-VLC + WLAN connection is implemented by socket programming. In addition, the working range, sniffing range, and key exchange latency are measured. The results validate the applicability of the Retro-VLC based solution.