The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.
Explore Research Products in the PAR It may take a few hours for recently added research products to appear in PAR search results.
Title: Shaping the professional growth of mathematics faculty who teach prospective secondary teachers
Professional development (PD) that supports faculty in teaching courses for prospective secondary teachers, especially courses focused on mathematical knowledge for teaching, are largely absent from higher education, despite the need to improve instruction in these courses. This study examines a novel PD program whose structure was inspired by rehearsals (Lampert et al., 2013). We analyzed PD discussions throughout the year using an instructional triad framework, and we interpreted the PD structure using Clarke and Hollingsworth’s (2002) Interconnected Model for Professional Growth. We suggest that a rehearsal-inspired pedagogy offered opportunities for faculty growth in attending to student contributions. more »« less
Czap, L.; Ahrens, S.; Lischka, A.E.(
, Mathematics Education Across Cultures: Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education)
In our project, we develop curricular materials to support prospective secondary teachers’ development of MKT and provide professional development (PD) opportunities for instructors
ho will teach with these materials. In this paper, we examine the ways in which mathematics faculty engage in the teaching rehearsal debriefs included in the PD to answer the question: To what instructional interactions do instructors of mathematics content courses attend during rehearsal debriefs enacted in PD? Findings show that mathematics instructors attend to all types of interactions but attention is influenced by instructors’ mathematical knowledge.
Jackson, B.; Hauk, S.; Tsay, J. J.; Ramirez, A.(
, The Montana math enthusiast)
null
(Ed.)
The purpose of this report is to share a conceptual model useful in the design of professional learning about teaching for university mathematics faculty. The model is illustrated by examples from a particular design effort: the development of an online shortcourse for faculty new to teaching mathematics courses for prospective primary school teachers. How novice mathematics teacher educators grow as instructors is an emerging area of research and development in the United States. At the same time, it is well established that effective instructional design of any course, including a course for faculty, requires breadth first: understanding and anticipating the needs of the learner. Therefore, given the sparse knowledge base in the new arena of mathematics teacher educator professional growth, effective design requires leveraging the scant existing research while also exploring and iteratively refining broad goals and objectives for faculty learning. Only after a conceptual foundation is articulated for what is to be learned and what will constitute evidence of learning, can cycles of design productively examine and test-bed particular course features such as lesson content, structures (like scope and sequence), and processes (like communication and evaluation). In the example used in this report, several researchbased perspectives on learning in/for/about teaching guided design goals and short-course objectives. These valued perspectives informed creation and prioritization of principles for short-course design which, in turn, informed evaluation of faculty learning. With these conceptual foundations in place, design of lessons to realize the goals, principles, and objectives rapidly followed. The work reported here contributes to the knowledge base in two ways: (1) it addresses faculty professional development directly by describing and illustrating a model for supporting instructional improvement and (2) it provides metanarrative to scaffold the professional growth of those who design professional learning opportunities for post-secondary mathematics faculty.
Alemdar, Meltem; Ehsan, Hoda; Cappelli, Christopher; Kim, Euisun; Moore, Roxanne; Helms, Michael; Rosen, Jeffrey; Weissburg, Marc(
, American Society of Engineering education)
Biologically inspired design has become increasingly common in graduate and undergraduate engineering programs, consistent with an expanding emphasis by professional engineering societies on cross-disciplinary critical thinking skills and adaptive and sustainable design. However, bio-inspired engineering is less common in K-12 education. In 2019, the NSF funded a K-12 project entitled Biologically Inspired Design for Engineering Education (BIRDEE), to create socially relevant, accessible, and highly contextualized high school engineering curricula focusing on bio-inspired design. Studies have shown that women and underrepresented minorities are drawn to curricula, courses, and instructional strategies that are integrated, emphasize systems thinking, and facilitate connection building across courses or disciplines. The BIRDEE project also seeks to interest high school girls in engineering by providing curricula that incorporate humanistic, bio-inspired engineering with a focus on sustainable and authentic design contexts. BIRDEE curricula integrate bio-inspired design into the engineering design process by leveraging design tools that facilitate the application of biological concepts to design challenges. This provides a conceptual framework enabling students to systematically define a design problem, resulting in better, more well-rounded problem specifications.
The professional development (PD) for the participating teachers include six-week-long summer internships in university research laboratories focused on biology and bio-inspired design. The goal of these internships is to improve engineering teachers’ knowledge of bio-inspired design by partnering with cutting-edge engineers and scientists to study animal features and behaviors and their applications to engineering design. However, due to COVID-19 and research lab closures in the summer of 2020, the research team had to transfer the summer PD experience to an online setting. An asynchronous, quasi-facilitated online course was developed and delivered to teachers over six weeks. In this paper, we will discuss online pedagogical approaches to experiential learning, teaching bio-inspired design concepts, and the integration of these approaches in the engineering design process. Central to the online PD design and function of each course was the use of inquiry, experiential and highly-collaborative learning strategies.
Preliminary results show that teachers appreciated the aspects of the summer PD that included exploration, such as during the “Found Object” activity, and the process of building a prototype. These activities represented experiential learning opportunities where teachers were able to learn by doing. It was noted throughout the focus group discussions that such opportunities were appreciated by participating teachers. Teachers indicated that the experiential learning components of the PD allowed them to do something outside of their comfort zone, inspired them to do research that they would not have done outside of this experience, and allowed them to “be in the student's seat and get hands-on application”. By participating in these experiential learning opportunities, teachers were also able to better understand how the BIRDEE curriculum may impact students’ learning in their classrooms
Emiola, E.; Dalal, M.; Ladeji-Osias, K.(
, the Annual Meeting of the American Educational Research Association (AERA))
null
(Ed.)
Stakeholders of engineering education have recognized the need for engineering instruction in K‐12 classrooms, especially at the high school level. However, lack of engineering-specific standards and varied conceptions of engineering teaching create challenges for high school teachers to teach engineering courses. This paper explores high school teachers’ conceptions of engineering teaching in the context of an engineering education professional development (PD) workshop. We use Social Cognitive Career Theory (SCCT) to examine participants’ conceptions during two focus groups conducted as part of the PD; particularly focusing on teachers’ goals, interests, challenges, and expected outcomes of teaching a high school level engineering course. Results highlight the need for social support for teachers to sustain engineering teaching.
LaRochelle, Raymond; Hill-Lindsay, Sloan; Nickerson, Susan; Lamb, Lisa(
, Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education)
Much of the research on the development of professional noticing expertise has focused on prospective teachers. We contend that we must investigate practicing teachers as well, and in particular practicing secondary teachers, because they bring with them years of teaching experience and are situated in unique contexts. Hence we studied the longitudinal growth of the professional- noticing expertise of a group of practicing secondary teachers (N=10) as they progressed through a 5-year professional development (PD) about being responsive to students’ mathematical thinking. Results indicated that the first half of the PD supported their interpreting and deciding-how-to- respond skills, and the second half of the PD supported their attending skills, which were already strong even before the PD. We compare these results with the activities that occurred in the PD and discuss implications for future research and PD programs.
Czap, L., Ahrens, S., Lai, Y., and Lischka, A. E. Shaping the professional growth of mathematics faculty who teach prospective secondary teachers. Retrieved from https://par.nsf.gov/biblio/10352333. Proceedings of the forty-third annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education .
Czap, L., Ahrens, S., Lai, Y., & Lischka, A. E. Shaping the professional growth of mathematics faculty who teach prospective secondary teachers. Proceedings of the forty-third annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, (). Retrieved from https://par.nsf.gov/biblio/10352333.
Czap, L., Ahrens, S., Lai, Y., and Lischka, A. E.
"Shaping the professional growth of mathematics faculty who teach prospective secondary teachers". Proceedings of the forty-third annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (). Country unknown/Code not available. https://par.nsf.gov/biblio/10352333.
@article{osti_10352333,
place = {Country unknown/Code not available},
title = {Shaping the professional growth of mathematics faculty who teach prospective secondary teachers},
url = {https://par.nsf.gov/biblio/10352333},
abstractNote = {Professional development (PD) that supports faculty in teaching courses for prospective secondary teachers, especially courses focused on mathematical knowledge for teaching, are largely absent from higher education, despite the need to improve instruction in these courses. This study examines a novel PD program whose structure was inspired by rehearsals (Lampert et al., 2013). We analyzed PD discussions throughout the year using an instructional triad framework, and we interpreted the PD structure using Clarke and Hollingsworth’s (2002) Interconnected Model for Professional Growth. We suggest that a rehearsal-inspired pedagogy offered opportunities for faculty growth in attending to student contributions.},
journal = {Proceedings of the forty-third annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education},
author = {Czap, L. and Ahrens, S. and Lai, Y. and Lischka, A. E.},
editor = {D. Olanoff and K. Johnson and S. Spitzer}
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.