skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Polarization Sensitive Imaging with Qubits
We compare reconstructed quantum state images of a birefringent sample using direct quantum state tomography and inverse numerical optimization technique. Qubits are used to characterize birefringence in a flat transparent plastic sample by means of polarization sensitive measurement using density matrices of two-level quantum entangled photons. Pairs of entangled photons are generated in a type-II nonlinear crystal. About half of the generated photons interact with a birefringent sample, and coincidence counts are recorded. Coincidence rates of entangled photons are measured for a set of sixteen polarization states. Tomographic and inverse numerical techniques are used to reconstruct the density matrix, the degree of entanglement, and concurrence for each pixel of the investigated sample. An inverse numerical optimization technique is used to obtain a density matrix from measured coincidence counts with the maximum probability. Presented results highlight the experimental noise reduction, greater density matrix estimation, and overall image enhancement. The outcome of the entanglement distillation through projective measurements is a superposition of Bell states with different amplitudes. These changes are used to characterize the birefringence of a 3M tape. Well-defined concurrence and entanglement images of the birefringence are presented. Our results show that inverse numerical techniques improve overall image quality and detail resolution. The technique described in this work has many potential applications.  more » « less
Award ID(s):
2112550
PAR ID:
10352456
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Applied Sciences
Volume:
12
Issue:
4
ISSN:
2076-3417
Page Range / eLocation ID:
2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Polarization-sensitive quantum optical coherence tomography (PS-QOCT) is used to image and characterize birefringence effects in biological samples. Entangled photons are generated via spontaneous parametric down-conversion and split into a reference arm and a sample arm of a Mach Zehnder interferometer. Interferometric patterns between two entangled photons reveal information about tissue birefringence. Biological tissue samples are imaged and characterized, and their quantum interference patterns and birefringence profiles are presented. 
    more » « less
  2. Andrews, D.; Galvez, EJ; Rubinsztein-Dunlop, H. (Ed.)
    There is interest in using photon entanglement in biomedical applications. In one application, polarization-entangled photons pass through brain tissue. The effect of the brain tissue on the photon entanglement is measured via the decoherence that is imparted on the entangled state. Our current method to obtain a measure of the decoherence involves quantum state tomography, where a minimum of 16 measurements are used in conjunction with tomographic optimization to obtain the density matrix representing the state of the photons. In this work we report on a method to avoid tomographic optimization on behalf of a direct measurement of the elements of the density matrix. We make preliminary comparisons between the two methods. 
    more » « less
  3. We experimentally study the ability of a broadband “loop-and-switch” type quantum memory device to store entanglement. We find that one active loop-based memory and one passive fiber delay line can be used to faithfully store two polarization-entangled photons and demonstrate a rudimentary entanglement distribution protocol. The entangled photons are produced by a conventional spontaneous parametric down-conversion source with center wavelengths at 780 nm and bandwidths of ∼10 THz, while the memory has an even wider operational bandwidth that is enabled by the weakly dispersive nature of the Pockels effect used for polarization-insensitive active switching. These results help demonstrate the utility of loop-based quantum memories for quantum networking applications. 
    more » « less
  4. Motivated by recent advances in the development of single photon emitters for quantum information sciences, here we design and formulate a quantum cascade model that describes cascade emission by a quantum dot (QD) in a cavity structure while preserving entanglement that stores information needed for single photon emission. The theoretical approach is based on a photonic structure that consists of two orthogonal cavities in which resonance with either the first or second of the two emitted photons is possible, leading to amplification and rerouting of the entangled light. The cavity–QD scheme uses a four-level cascade emitter that involves three levels for each polarization, leading to two spatially entangled photons for each polarization. By solving the Schrodinger equation, we identify the characteristic properties of the system, which can be used in conjunction with optimization techniques to achieve the “best” design relative to a set of prioritized criteria or constraints in our optical system. The theoretical investigations include an analysis of emission spectra in addition to the joint spectral density profile, and the results demonstrate the ability of the cavities to act as frequency filters for the photons that make up the entanglements and to modify entanglement properties. The results provide new opportunities for the experimental design and engineering of on-demand single photon sources. 
    more » « less
  5. We propose a quantum diffraction imaging technique whereby one photon of an entangled pair is diffracted off a sample and detected in coincidence with its twin. The image is obtained by scanning the photon that did not interact with matter. We show that when a dynamical quantum system interacts with an external field, the phase information is imprinted in the state of the field in a detectable way. The contribution to the signal from photons that interact with the sample scales as ∝ I p 1 / 2 , where I p is the source intensity, compared with ∝ I p of classical diffraction. This makes imaging with weak fields possible, providing high signal-to-noise ratio, avoiding damage to delicate samples. A Schmidt decomposition of the state of the field can be used for image enhancement by reweighting the Schmidt modes contributions. 
    more » « less