skip to main content

Title: Rejuvenation of plasticity via deformation graining in magnesium
Abstract Magnesium, the lightest structural metal, usually exhibits limited ambient plasticity when compressed along its crystallographic c -axis (the “hard” orientation of magnesium). Here we report large plasticity in c -axis compression of submicron magnesium single crystal achieved by a dual-stage deformation. We show that when the plastic flow gradually strain-hardens the magnesium crystal to gigapascal level, at which point dislocation mediated plasticity is nearly exhausted, the sample instantly pancakes without fracture, accompanying a conversion of the initial single crystal into multiple grains that roughly share a common rotation axis. Atomic-scale characterization, crystallographic analyses and molecular dynamics simulations indicate that the new grains can form via transformation of pyramidal to basal planes. We categorize this grain formation as “deformation graining”. The formation of new grains rejuvenates massive dislocation slip and deformation twinning to enable large plastic strains.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The severe difficulty to resolve simultaneously both the macroscopic deformation process and the dislocation dynamics on the atomic scale limits our understanding of crystal plasticity. Here we use colloidal crystals, imaged on the single particle level by high-speed three-dimensional (3D) confocal microscopy, and resolve in real-time both the relaxation of the epitaxial misfit strain and the accompanying evolution of dislocations. We show how dislocation interactions give rise to the formation of complex dislocation networks in 3D and to unexpectedly sharp plastic relaxation. The sharp relaxation is facilitated by attractive interactions that promote the formation of new dislocations that are more efficient in mediating strain. Dislocation networks form fragmented structures, as dislocation growth is blocked by either attractive interactions, which result in the formation of sessile dislocation junctions, or by repulsion from perpendicular segments. The strength of these blocking mechanisms decreases with the thickness of the crystal film. These results reveal the critical role of dislocation interactions in plastic deformation of thin films and can be readily generalized from the colloidal to the atomic scale.

    more » « less
  2. This work systematically investigates the texture-property linkages in hexagonal close-packed (hexagonal) materials using a three-dimensional computational crystal plasticity approach. Magnesium and its alloys are considered as a model system. We perform full-field, large-strain, micromechanical simulations using a wide range of surrogate textures that also sample several experimental datasets for a range of Mg alloys. The role of textural variability and the associated sensitivity of deformation mechanisms on the evolution of the macroscopic plastic anisotropy and strength asymmetry is mapped under uniaxial tensile and compressive loading along the material principal and off-axes orientations. To assess the role of crystallographic plastic anisotropy, two distinct material datasets are simulated, which represent pure and alloyed magnesium. The results provide insights into experimental observations reported for magnesium alloys over a range of materials textures. We discuss potential implications on the damage tolerance from the aggregate plastic anisotropy arising from intrinsic crystallographic and textural effects. 
    more » « less
  3. Chief-in-Editor: Jacob Fish Senior Advisor: J. Tinsley Oden Associate Editors: Somnath Ghosh, Arif Masud (Ed.)

    Aspects of plastic anisotropy in damage accumulation are considered for a class of hexagonal crystals that deform by combined slip and twinning. Focus is placed on crystallographic aspects that are currently absent from constitutive formulations of ductile damage. To this end, three-dimensional finite-element calculations are carried out using a cubic unit cell containing a single void embedded in a crystal matrix. Plastic flow in the latter is described using crystal plasticity with parameters representative of single crystal pure magnesium. The effect of void oblateness is analyzed in some detail, as voids often form as blunted microcracks in Mg alloys. The analyses reveal two aspects peculiar to twinning-mediated void growth: (1) insensitivity of the effective stress-strain response to void oblateless and (2) a plastic auxetic effect. Both aspects manifest under certain circumstances. Some implications in terms of incorporating the uncovered crystallographic aspects in coupled plasticity-damage formulations of anisotropic materials are discussed.

    more » « less
  4. Schuh, Christopher A (Ed.)
    The {-1012} tensile twins terminating inside the grains of a deformed Mg-Y alloy were investigated by transmission electron microscopy. The crystallographic features of terminating twins and associated slip structures were quantified and correlated. The local stresses developed at a terminating {-1012} twin were computed using crystal plasticity simulations in order to interpret the observed slip patterns. Results indicate that both basal and matrix glide were involved in accommodating the plastic stresses developed in the vicinity of terminating twins. Along the twin boundary, the defect contrast consistent with that of lattice dislocations and twinning partials was observed. Based on these observations, a dislocation reaction is proposed that establishes an interrelationship between the observed matrix glide and {-1012} twinning in Mg-Y alloys. 
    more » « less
  5. In this work, we performed in situ nanoindentation in TEM to capture the real-time 〈c + a〉 dislocation and twinning activities in pure Mg during loading and unloading. We demonstrated that the screw component of 〈c + a〉 dislocations glides continuously, while the edge components rapidly become sessile during loading. The twin tip propagation is intermittent, whereas the twin boundary migration is more continuous. During unloading, we observed the elastic strain relaxation causes both 〈c + a〉 dislocation retraction and detwinning. Moreover, we note that the plastic zone comprised of 〈c + a〉 dislocations in Mg is well-defined, which contrasts with the diffused plastic zones observed in face-centered cubic metals under the nanoindentation impressions. Additionally, molecular dynamics simulations were performed to study the formation and evolution of deformation-induced crystallographic defects at the early stages of indentation. We observed that, in addition to 〈a〉 dislocations, the I1 stacking fault bounded with a 〈1/2c+p〉 Frank loop can be generated from the plastic zone ahead of the indenter, and potentially serve as a nucleation source for abundant 〈c + a〉 dislocations observed experimentally. These new findings are anticipated to provide new knowledge on the deformation mechanisms of Mg, which are difficult to obtain through conventional ex situ approaches. These observations may serve as a baseline for simulation work that investigate the dynamics of 〈c + a〉 dislocation slip and twinning in Mg and alloys. 
    more » « less