skip to main content


Title: Rejuvenation of plasticity via deformation graining in magnesium
Abstract Magnesium, the lightest structural metal, usually exhibits limited ambient plasticity when compressed along its crystallographic c -axis (the “hard” orientation of magnesium). Here we report large plasticity in c -axis compression of submicron magnesium single crystal achieved by a dual-stage deformation. We show that when the plastic flow gradually strain-hardens the magnesium crystal to gigapascal level, at which point dislocation mediated plasticity is nearly exhausted, the sample instantly pancakes without fracture, accompanying a conversion of the initial single crystal into multiple grains that roughly share a common rotation axis. Atomic-scale characterization, crystallographic analyses and molecular dynamics simulations indicate that the new grains can form via transformation of pyramidal to basal planes. We categorize this grain formation as “deformation graining”. The formation of new grains rejuvenates massive dislocation slip and deformation twinning to enable large plastic strains.  more » « less
Award ID(s):
2032483
NSF-PAR ID:
10352461
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The severe difficulty to resolve simultaneously both the macroscopic deformation process and the dislocation dynamics on the atomic scale limits our understanding of crystal plasticity. Here we use colloidal crystals, imaged on the single particle level by high-speed three-dimensional (3D) confocal microscopy, and resolve in real-time both the relaxation of the epitaxial misfit strain and the accompanying evolution of dislocations. We show how dislocation interactions give rise to the formation of complex dislocation networks in 3D and to unexpectedly sharp plastic relaxation. The sharp relaxation is facilitated by attractive interactions that promote the formation of new dislocations that are more efficient in mediating strain. Dislocation networks form fragmented structures, as dislocation growth is blocked by either attractive interactions, which result in the formation of sessile dislocation junctions, or by repulsion from perpendicular segments. The strength of these blocking mechanisms decreases with the thickness of the crystal film. These results reveal the critical role of dislocation interactions in plastic deformation of thin films and can be readily generalized from the colloidal to the atomic scale.

     
    more » « less
  2. This work systematically investigates the texture-property linkages in hexagonal close-packed (hexagonal) materials using a three-dimensional computational crystal plasticity approach. Magnesium and its alloys are considered as a model system. We perform full-field, large-strain, micromechanical simulations using a wide range of surrogate textures that also sample several experimental datasets for a range of Mg alloys. The role of textural variability and the associated sensitivity of deformation mechanisms on the evolution of the macroscopic plastic anisotropy and strength asymmetry is mapped under uniaxial tensile and compressive loading along the material principal and off-axes orientations. To assess the role of crystallographic plastic anisotropy, two distinct material datasets are simulated, which represent pure and alloyed magnesium. The results provide insights into experimental observations reported for magnesium alloys over a range of materials textures. We discuss potential implications on the damage tolerance from the aggregate plastic anisotropy arising from intrinsic crystallographic and textural effects. 
    more » « less
  3. Schuh, Christopher A (Ed.)
    The {-1012} tensile twins terminating inside the grains of a deformed Mg-Y alloy were investigated by transmission electron microscopy. The crystallographic features of terminating twins and associated slip structures were quantified and correlated. The local stresses developed at a terminating {-1012} twin were computed using crystal plasticity simulations in order to interpret the observed slip patterns. Results indicate that both basal and matrix glide were involved in accommodating the plastic stresses developed in the vicinity of terminating twins. Along the twin boundary, the defect contrast consistent with that of lattice dislocations and twinning partials was observed. Based on these observations, a dislocation reaction is proposed that establishes an interrelationship between the observed matrix glide and {-1012} twinning in Mg-Y alloys. 
    more » « less
  4. A physically-informed continuum crystal plasticity model is presented to elucidate deformation mechanisms, dislocation evolution and the non-Schmid effect in body-centered-cubic (bcc) tantalum widely used as a key structural material for mechanical and thermal extremes. We show the unified structural modeling framework informed by mesoscopic dislocation dynamics simulations is capable of capturing salient features of the large inelastic behavior of tantalum at quasi-static (10−3 s−1) to extreme strain rates (5000 s−1) and at low (77 K) to high temperatures (873 K) at both single- and polycrystal levels. We also present predictive capabilities of the model for microstructural evolution in the material. To this end, we investigate the effects of dislocation interactions on slip activities, instability and the non-Schmid behavior at the single crystal level. Furthermore, ex situ measurements on crystallographic texture evolution and dislocation density growth are carried out for polycrystal tantalum specimens at increasing strains. Numerical simulation results also support that the modeling framework is capable of capturing the main features of the polycrystal behavior over a wide range of strains, strain rates and temperatures. The theoretical, experimental and numerical results at both single- and polycrystal levels provide critical insight into the underlying physical pictures for micro- and macroscopic responses and their relations in this important class of refractory bcc materials undergoing large inelastic deformations. 
    more » « less
  5. Abstract

    The deformation of crystalline materials by dislocation motion takes place in discrete amounts determined by the Burgers vector. Dislocations may move individually or in bundles, potentially giving rise to intermittent slip. This confers plastic deformation with a certain degree of variability that can be interpreted as being caused by stochastic fluctuations in dislocation behavior. However, crystal plasticity (CP) models are almost always formulated in a continuum sense, assuming that fluctuations average out over large material volumes and/or cancel out due to multi-slip contributions. Nevertheless, plastic fluctuations are known to be important in confined volumes at or below the micron scale, at high temperatures, and under low strain rate/stress deformation conditions. Here, we develop a stochastic solver for CP models based on the residence-time algorithm that naturally captures plastic fluctuations by sampling among the set of active slip systems in the crystal. The method solves the evolution equations of explicit CP formulations, which are recast as stochastic ordinary differential equations and integrated discretely in time. The stochastic CP model is numerically stable by design and naturally breaks the symmetry of plastic slip by sampling among the active plastic shear rates with the correct probability. This can lead to phenomena such as intermittent slip or plastic localization without adding external symmetry-breaking operations to the model. The method is applied to body-centered cubic tungsten single crystals under a variety of temperatures, loading orientations, and imposed strain rates.

     
    more » « less