skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dilaton-axion inflation with PBHs and GWs
Abstract We discuss two-stage dilaton-axion inflation models [1] and describe α -attractor models with either exponential or polynomial approach to the plateau.We implement one of the models of primordial black hole production proposed in [2] in the α -attractor context, and develop its supergravity version. The predictions of this model following from its polynomial attractor properties are: n s and r are α -independent, r depends on the mass parameter μ defining the approach to the plateau. The tachyonic instability at the transition point between the two stages of inflation is proportional to the negative curvature of the hyperbolic space ℛ K = -2/3 α . Thereforethe masses of primordial black holes (PBHs) and the frequencies of small-scale gravitational waves (GWs) in this model show significant dependence on  α .  more » « less
Award ID(s):
2014215
PAR ID:
10352512
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Cosmology and Astroparticle Physics
Volume:
2022
Issue:
08
ISSN:
1475-7516
Page Range / eLocation ID:
037
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We investigate the two-stage inflation regime in the theory of hybrid cosmological  α-attractors. The spectrum of inflationary perturbations is compatible with the latest Planck/BICEP/Keck Array results, thanks to the attractor properties of the model. However, at smaller scales, it may have a very high peak of controllable width and position, leading to a copious production of primordial black holes (PBH) and generation of a stochastic background of gravitational waves (SGWB). 
    more » « less
  2. null (Ed.)
    A bstract We study M-theory compactified on twisted 7-tori with G 2 -holonomy. The effective 4d supergravity has 7 chiral multiplets, each with a unit logarithmic Kähler potential. We propose octonion, Fano plane based superpotentials, codifying the error correcting Hamming (4, 7) code. The corresponding 7-moduli models have Minkowski vacua with one flat direction. We also propose superpotentials based on octonions/error correcting codes for Minkowski vacua models with two flat directions. We update phenomenological α -attractor models of inflation with 3 α = 7 , 6 , 5 , 4 , 3 , 1, based on inflation along these flat directions. These inflationary models reproduce the benchmark targets for detecting B-modes, predicting 7 different values of $$ r=12\alpha /{N}_e^2 $$ r = 12 α / N e 2 in the range 10 − 2 ≳ r ≳ 10 − 3 , to be explored by future cosmological observations. 
    more » « less
  3. Abstract Inflationary α -attractor models can be naturally implemented in supergravity with hyperbolic geometry. They have stable predictions for observables, such as n s = 1 - 2/ N e , assuming that the potential in terms of the original geometric variables, as well as its derivatives, are not singular at the boundary of the hyperbolic disk, or half-plane. In these models, the potential in the canonically normalized inflaton field φ has a plateau, which is approached exponentially fast at large φ . We call them exponential α-attractors . We present a closely related class of models, where the potential is not singular, but its derivative is singular at the boundary. The resulting inflaton potential is also a plateau potential, but it approaches the plateau polynomially. We call them polynomial α-attractors . Predictions of these two families of attractors completely cover the sweet spot of the Planck/BICEP/Keck data. The exponential ones are on the left, the polynomial are on the right. 
    more » « less
  4. In recent years, the formation of primordial black holes (PBH) in the early universe inflationary cosmology has garnered significant attention. One plausible scenario for primordial black hole (PBH) formation arises during the preheating stage following inflation. Notably, this scenario does not necessitate any ad-hoc fine-tuning of the scalar field potential. This paper focuses on the growth of primordial density perturbation and the consequent possibility of PBH formation in the preheating stage of the Starobinsky model for inflation. The typical mechanism for PBH formation during preheating is based on the collapse of primordial fluctuations that become super-horizon during inflation (type I) and re-enter the particle horizon in the different phases of cosmic expansion. In this work, we show that there exists a certain range of modes that remain in the sub-horizon (not exited) during inflation (type II modes) but evolve identically to type I modes if they fall into the instability band, leading to large density perturbation above the threshold and can potentially also contribute to the PBH formation. We outline the conditions that govern the potential collapse of typeI and type II modes with wavelengths exceeding the Jeans length,which we derive based on the effective sound speed of scalar fieldfluctuations. Since the preheating stage is an `inflaton' (approximately) matter-dominated phase, we follow the framework of the critical collapse of fluctuations and compute the mass fraction using the well-known Press-Schechter and the Khlopov-Polnarev formalisms, and compare the two. Finally, we comment on the implications of our study for the investigations concerned with primordial accretion and consequent PBH contribution to the dark matter. 
    more » « less
  5. Abstract We study cosmological theory where the kinetic term and potential have SL(2,ℤ) symmetry. Potentials have a plateau at large values of the inflaton field, where the axion forms a flat direction. Due to the underlying hyperbolic geometry and special features of SL(2,ℤ) potentials, the theory exhibits an α-attractor behavior: its cosmological predictions are stable with respect to significant modifications of the SL(2,ℤ) invariant potentials. We present a supersymmetric version of this theory in the framework ofD3 induced geometric inflation. The choice ofαis determined by underlying string compactification. For example, in a CY compactification withT2, one has 3α= 1, the lowest discrete Poincaré disk target for LiteBIRD. 
    more » « less