Pegmatites are shallow, coarse-grained magmatic intrusions with crystals occasionally approaching meters in length. Compared to their plutonic hosts, pegmatites are thought to have cooled rapidly, suggesting that these large crystals must have grown fast. Growth rates and conditions, however, remain poorly constrained. Here we investigate quartz crystals and their trace element compositions from miarolitic cavities in the Stewart pegmatite in southern California, USA, to quantify crystal growth rates. Trace element concentrations deviate considerably from equilibrium and are best explained by kinetic effects associated with rapid crystal growth. Kinetic crystal growth theory is used to show that crystals accelerated from an initial growth rate of 10−6–10−7 m s−1 to 10−5–10−4 m s−1 (10-100 mm day−1 to 1–10 m day−1), indicating meter sized crystals could have formed within days, if these rates are sustained throughout pegmatite formation. The rapid growth rates require that quartz crystals grew from thin (micron scale) chemical boundary layers at the fluid-crystal interfaces. A strong advective component is required to sustain such thin boundary layers. Turbulent conditions (high Reynolds number) in these miarolitic cavities are shown to exist during crystallization, suggesting that volatile exsolution, crystallization, and cavity generation occur together. 
                        more » 
                        « less   
                    
                            
                            Crystallization in Zirconia Film Nano-Layered with Silica
                        
                    
    
            Gravitational waves are detected using resonant optical cavity interferometers. The mirror coatings’ inherent thermal noise and photon scattering limit sensitivity. Crystals within the reflective coating may be responsible for either or both noise sources. In this study, we explored crystallization reduction in zirconia through nano-layering with silica. We used X-ray diffraction (XRD) to monitor crystal growth between successive annealing cycles. We observed crystal formation at higher temperatures in thinner zirconia layers, indicating that silica is a successful inhibitor of crystal growth. However, the thinnest barriers break down at high temperatures, thus allowing crystal growth beyond each nano-layer. In addition, in samples with thicker zirconia layers, we observe that crystallization saturates with a significant portion of amorphous material remaining. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2011710
- PAR ID:
- 10352586
- Date Published:
- Journal Name:
- Nanomaterials
- Volume:
- 11
- Issue:
- 12
- ISSN:
- 2079-4991
- Page Range / eLocation ID:
- 3444
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Understanding crystallization mechanisms in nano-sized metallic glasses (MGs) is important to the manufacturing and application of these new nanomaterials that possess a unique combination of structural and functional properties. Due to the two-dimensional projections and limited spatial and/or temporal resolutions in experiments, significant questions (e.g., whether nucleation takes place on the free surface or in a near-surface layer) regarding this subject remain under debate. Here, we address these outstanding questions using molecular dynamics simulations of crystallization in MG nanorods together with atomistic visualization and data analysis. We show that nucleation in the nano-sized MGs predominantly takes place on the surface by converting the high-energy liquid surface to a lower-energy crystal surface (the most close-packed atomic plane). This is true for all the nanorods with different diameters studied. On the other hand, the apparent growth mode (inward/radial, lateral or longitudinal) and the resulting grain structure are more dependent on the nanorod diameter. For a relatively big diameter of the nanorod, the overall growth rate does not differ much among the three directions and the resulting grains are approximately semispherical. For small diameters, grains appear to grow more in longitudinal direction and some grains may form relatively long single-crystal segments along the length of the nanorod. The reasons for the difference are discussed. The study provides direct atomistic insights into the crystallization mechanisms in nano-sized MGs, which can facilitate the manufacturing and application of these new advanced materials.more » « less
- 
            Abstract High-grade ores in low-sulfidation epithermal precious metal deposits include banded quartz veins that contain gold dendrites. The processes by which dendrite growth takes place have been subject to debate for decades, especially given that these deposits are known to form from dilute thermal liquids that contain only trace amounts of gold. It is shown here that growth of gold dendrites in epithermal veins at the McLaughlin deposit in California (western USA) originally took place within bands of gel-like noncrystalline silica. The gel provided a framework for the delicate dendrites to form. The high permeability of the gel allowed the diffusion and advection of gold from the thermal liquids flowing across the top of the silica layers to the sites of crystal growth within the gel. Over time, the gel hardened to form opal-AG. This silica phase is thermodynamically unstable and recrystallized to quartz that has a distinct mosaic texture.more » « less
- 
            Heng, Jerry (Ed.)The morphological evolution of organic crystals during crystallization depends on the face-specific growth rates. Classical growth rate models relate the face-specific growth rates to the crystal lattice, energy of stable facets, growth mechanism, and supersaturation. The complexities of these models have increased over time to account accurately for solution conditions, the structure of growth units, and their attachment rates. Such advanced growth rate models require several layers of computations to obtain attachment energies of facets, nucleation rates, kink density, and attachment rates. Among these, the most intensive and time-consuming computation is for attachment rates, which require molecular dynamic simulations. This substantially increases the overall computation time to predict the absolute growth rate for even one crystallization condition. Since it is nearly impossible to iterate such a growth rate model, optimization schemes cannot be implemented to identify solution conditions that favor specific crystal growth. To reduce the computational time for attachment rate calculations, we implement a group contribution method (GCM) that relates the properties of functional groups in a molecule to their attachment rates to the crystal lattice, thereby rapidly estimating the growth rates of organic crystals. The process of molecular attachment involves partial desolvation of a solvated molecule, referred to as a transition state, followed by total desolvation via spontaneous attachment to a crystal facet. The first step in GCM is to identify the equilibrium states of fully solvated and partially desolvated solute molecules. The degree of supersaturation dictates the extent of this equilibrium and, thereby, the activation barrier for the growth of crystals, according to transition state theory. Identifying this equilibrium phenomenon allows for capturing the functional-group-specific interactions that depend on molecular motion, which could be related to operating conditions such as temperature and pressure. The stochastic optimization technique with Monte-Carlo sampling allows an efficient optimization problem solution to obtain the group interaction parameters. The GCM approach is first validated for the estimation of growth rates of glutamic acid and L-histidine, and then extended to predict growth rates of alanine and glycine rapidly. The optimized parameters and GCM scheme can be used to estimate growth rates in other crystallization systems.more » « less
- 
            Abstract Modifiers are commonly used in natural, biological, and synthetic crystallization to tailor the growth of diverse materials. Here, we identify tautomers as a new class of modifiers where the dynamic interconversion between solute and its corresponding tautomer(s) produces native crystal growth inhibitors. The macroscopic and microscopic effects imposed by inhibitor-crystal interactions reveal dual mechanisms of inhibition where tautomer occlusion within crystals that leads to natural bending, tunes elastic modulus, and selectively alters the rate of crystal dissolution. Our study focuses on ammonium urate crystallization and shows that the keto-enol form of urate, which exists as a minor tautomer, is a potent inhibitor that nearly suppresses crystal growth at select solution alkalinity and supersaturation. The generalizability of this phenomenon is demonstrated for two additional tautomers with relevance to biological systems and pharmaceuticals. These findings offer potential routes in crystal engineering to strategically control the mechanical or physicochemical properties of tautomeric materials.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    