skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Atomic Mechanisms of Crystallization in Nano-Sized Metallic Glasses
Understanding crystallization mechanisms in nano-sized metallic glasses (MGs) is important to the manufacturing and application of these new nanomaterials that possess a unique combination of structural and functional properties. Due to the two-dimensional projections and limited spatial and/or temporal resolutions in experiments, significant questions (e.g., whether nucleation takes place on the free surface or in a near-surface layer) regarding this subject remain under debate. Here, we address these outstanding questions using molecular dynamics simulations of crystallization in MG nanorods together with atomistic visualization and data analysis. We show that nucleation in the nano-sized MGs predominantly takes place on the surface by converting the high-energy liquid surface to a lower-energy crystal surface (the most close-packed atomic plane). This is true for all the nanorods with different diameters studied. On the other hand, the apparent growth mode (inward/radial, lateral or longitudinal) and the resulting grain structure are more dependent on the nanorod diameter. For a relatively big diameter of the nanorod, the overall growth rate does not differ much among the three directions and the resulting grains are approximately semispherical. For small diameters, grains appear to grow more in longitudinal direction and some grains may form relatively long single-crystal segments along the length of the nanorod. The reasons for the difference are discussed. The study provides direct atomistic insights into the crystallization mechanisms in nano-sized MGs, which can facilitate the manufacturing and application of these new advanced materials.  more » « less
Award ID(s):
2221854
PAR ID:
10422438
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Crystals
Volume:
13
Issue:
1
ISSN:
2073-4352
Page Range / eLocation ID:
32
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It is generally known that the incorporation of crystals in the glass matrix can enhance the ductility of metallic glasses (MGs), at the expense of reduced strength, and that the deformation of MGs, particularly during shear banding, can induce crystal formation/growth. Here, we show that these known trends for the interplay between crystals and deformation of MGs may hold true or become inverted depending on the size of the crystals relative to the shear bands. We performed molecular dynamics simulations of tensile tests on nanocrystal-bearing MGs. When the crystals are relatively small, they bolster the strength rather than the ductility of MGs, and the crystals within a shear band undergo redissolution as the shear band propagates. In contrast, larger crystals tend to enhance ductility at the cost of strength, and the crystal volume fraction increases during deformation. These insights offer a more comprehensive understanding of the intricate relationship between deformation and crystals/crystallization in MGs, useful for fine-tuning the structure and mechanical properties of both MGs and MG–crystal composites. 
    more » « less
  2. Abstract Despite the large number of reports on colloidal nanocrystals, very little is known about the mechanistic details in terms of nucleation and growth at the atomistic level. Taking bimetallic core-shell nanocrystals as an example, here we integrate in situ liquid-cell transmission electron microscopy with first-principles calculations to shed light on the atomistic details involved in the nucleation and growth of Pt on Pd cubic seeds. We elucidate the roles played by key synthesis parameters, including capping agent and precursor concentration, in controlling the nucleation site, diffusion path, and growth pattern of the Pt atoms. When the faces of a cubic seed are capped by Br − , Pt atoms preferentially nucleate from corners and then diffuse to edges and faces for the creation of a uniform shell. The diffusion does not occur until the Pt deposited at the corner has reached a threshold thickness. At a high concentration of the precursor, self-nucleation takes place and the Pt clusters then randomly attach to the surface of a seed for the formation of a non-uniform shell. These atomistic insights offer a general guideline for the rational synthesis of nanocrystals with diverse compositions, structures, shapes, and related properties. 
    more » « less
  3. Abstract The accuracy of a differential thermal analysis (DTA) technique for predicting the temperature range of significant nucleation is examined in a BaO∙2SiO2glass by iterative numerical calculations. The numerical model takes account of time‐dependent nucleation, finite particle size, size‐dependent crystal growth rates, and surface crystallization. The calculations were made using the classical and, for the first time, the diffuse interface theories of nucleation. The results of the calculations are in agreement with experimental measurements, demonstrating the validity of the DTA technique. They show that this is independent of the DTA scan rate used and that surface crystallization has a negligible effect for the glass particle sizes studied. A breakdown of the Stokes‐Einstein relation between viscosity and the diffusion coefficient is demonstrated for low temperatures, near the maximum nucleation rate. However, it is shown that accurate values for the diffusion coefficient can be obtained from the induction time for nucleation and the growth velocity in this temperature range. 
    more » « less
  4. DNA-coated colloids can self-assemble into an incredible diversity of crystal structures, but their applications have been limited by poor understanding and control over the crystallization dynamics. To address this challenge, we use microfluidics to quantify the kinetics of DNA-programmed self-assembly along the entire crystallization pathway, from thermally activated nucleation through reaction-limited and diffusion-limited phases of crystal growth. Our detailed measurements of the temperature and concentration dependence of the kinetics at all stages of crystallization provide a stringent test of classical theories of nucleation and growth. After accounting for the finite rolling and sliding rates of micrometer-sized DNA-coated colloids, we show that modified versions of these classical theories predict the absolute nucleation and growth rates with quantitative accuracy. We conclude by applying our model to design and demonstrate protocols for assembling large single crystals with pronounced structural coloration, an essential step in creating next-generation optical metamaterials from colloids. 
    more » « less
  5. Despite the critical role of sintering phenomena in constraining the long-term durability of nano-sized particles, a clear understanding of nanoparticle sintering has remained elusive due to the challenges in atomically tracking the neck initiation and discerning different mechanisms. Through the integration of in-situ transmission electron microscopy and atomistic modeling, this study uncovers the atomic dynamics governing the neck initiation of Pt-Fe nanoparticles via a surface self-diffusion process, allowing for coalescence without significant particle movement. Real-time imaging reveals that thermally activated surface morphology changes in individual nanoparticles induce significant surface self-diffusion. The kinetic entrapment of self-diffusing atoms in the gaps between closely spaced nanoparticles leads to the nucleation and growth of atomic layers for neck formation. This surface self-diffusion-driven sintering process is activated at a relatively lower temperature compared to the classic Ostwald ripening and particle migration and coalescence processes. The fundamental insights have practical implications for manipulating the morphology, size distribution, and stability of nanostructures by leveraging surface self-diffusion processes. 
    more » « less