skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CS1 Student Assessments of Themselves Relative to Others: The Role of Self-Critical Bias and Gender
University introductory computer science courses (CS1) present many challenges. Students enter CS1 with varying backgrounds and many are evaluating their potential for success in the major. Students often negatively self-assess in response to natural programming moments, such as getting a syntax error, but we have a limited understanding of the mechanisms that drive these self-assessments. In this paper, we study the differences in student assessments of themselves and their assessments of others in response to particular programming moments. We analyze survey data from 214 CS1 students, finding that many have a self-critical bias, evaluating themselves more harshly than others. We also found that women have a stronger self-critical bias, and that students tend to be more self-critical when the other is female. These insights can help us reduce the impact of negative self-assessments on student experiences.  more » « less
Award ID(s):
1755628
PAR ID:
10352596
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ISLS Annual Meeting 2021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Undergraduate computer science (CS) programs often suffer from high dropout rates. Recent research suggests that self-efficacy -- an individual's belief in their ability to complete a task -- can influence whether students decide to persist in CS. Studies show that students' self-assessments affect their self-efficacy in many domains, and in CS, researchers have found that students frequently assess their programming ability based on their expectations about the programming process. However, we know little about the specific programming experiences that prompt the negative self-assessments that lead to lower self-efficacy. In this paper, we present findings from a survey study with 214 CS1 students from three universities. We used vignette-style questions to describe thirteen programming moments which may prompt negative self-assessments, such as getting syntax errors and spending time planning. We found that many students across all three universities reported that they negatively self-assess at each of the thirteen moments, despite the differences in curriculum and population. Furthermore, those who report more frequent negative self-assessments tend to have lower self-efficacy. Finally, our findings suggest that students' perceptions of professional programming practice may influence their expectations and negative self-assessments. By reducing the frequency that students self-assess negatively while programming, we may be able to improve self-efficacy and decrease dropout rates in CS. 
    more » « less
  2. Student perceptions of programming can impact their experiences in introductory computer science (CS) courses. For example, some students negatively assess their own ability in response to moments that are natural parts of expert practice, such as using online resources or getting syntax errors. Systems that automatically detect these moments from interaction log data could help us study these moments and intervene when the occur. However, while researchers have analyzed programming log data, few systems detect pre-defined moments, particularly those based on student perceptions. We contribute a new approach and system for detecting programming moments that students perceive as important from interaction log data. We conducted retrospective interviews with 41 CS students in which they identified moments that can prompt negative self-assessments. Then we created a qualitative codebook of the behavioral patterns indicative of each moment, and used this knowledge to build an expert system. We evaluated our system with log data collected from an additional 33 CS students. Our results are promising, with F1 scores ranging from 66% to 98%. We believe that this approach can be applied in many domains to understand and detect student perceptions of learning experiences. 
    more » « less
  3. In computer science (CS) higher education, many students in introductory courses (CS1) struggle to learn programming due to both the complexity of the discipline and negative affective experiences while learning. Large class sizes hinder the opportunity to receive support that addresses both disciplinary knowledge and affective experiences, both of which have been shown to influence self-efficacy. Our work utilized a combination of structured daily diaries and retrospective interviews to surface participants’ programming experiences, affective responses, and self-perceptions. Through two case studies, we highlight the intertwined nature of disciplinary knowledge and affective experiences in the learning process of students in CS1, and advocate for increased attention to student interactions with TAs as an opportunity to provide affective support along with disciplinary learning. 
    more » « less
  4. Assessing student responses is a critical task in adaptive educational systems. More specifically, automatically evaluating students' self-explanations contributes to understanding their knowledge state which is needed for personalized instruction, the crux of adaptive educational systems. To facilitate the development of Artificial Intelligence (AI) and Machine Learning models for automated assessment of learners' self-explanations, annotated datasets are essential. In response to this need, we developed the SelfCode2.0 corpus, which consists of 3,019 pairs of student and expert explanations of Java code snippets, each annotated with semantic similarity, correctness, and completeness scores provided by experts. Alongside the dataset, we also provide performance results obtained with several baseline models based on TF-IDF and Sentence-BERT vectorial representations. This work aims to enhance the effectiveness of automated assessment tools in programming education and contribute to a better understanding and supporting student learning of programming. 
    more » « less
  5. Ko, A. K. (Ed.)
    There are significant participation gaps in computing, and the way to address these participation gaps lies not simply in getting students from underrepresented groups into a CS1 classroom, but supporting students to pursue their interest in computing further beyond CS1. There are many factors that may influence students’ pursuit of computing beyond introductory courses, including their sense that they can do what CS courses require of them (their self-efficacy) and positive emotional experiences in CS courses. When interest has been addressed in computing education, research has treated it mostly as an outcome of particular pedagogical approaches or curricula; what has not been studied is how students’ longer-term interest develops through more granular experiences that students have as they begin to engage with computing. In this paper, we present the results of a study designed to investigate how students’ interest in computing develops as a product of their momentary self-efficacy and affective experiences. Using a methodology that is relatively uncommon to computer science education—the experience sampling method, which involves frequently asking students brief, unobtrusive questions about their experiences—we surveyed CS1 students every week over the course of a semester to capture the nuances of their experiences. 74 CS1 students responded 14-18 times over the course of a semester about their self-efficacy, frustration, and situational interest. With this data, we used a multivariate, multi-level statistical model that allowed us to estimate how students’ granular, momentary experiences (measured through the experience sampling method surveys) and initial interest, self-efficacy, and self-reported gender (measured through traditional surveys) relate to their longer-term interest and achievement in the course. We found that students’ momentary experiences have a significant impact on their interest in computing and course outcomes, even controlling for the self-efficacy and interest students reported at the beginning of the semester. We also found significant gender differences in students’ momentary experiences, however, these were reduced substantially when students’ self-efficacy was added to the model, suggesting that gender gaps could instead be self-efficacy gaps. These results suggest that students’ momentary experiences in CS1, how they experience the course week to week, have an impact on their longer-term interest and learning outcomes. Furthermore, we found that male and female students reported different experiences, suggesting that improving the CS1 experiences that students have could help to close gender-related participation gaps. In all, this study shows that the granular experiences students have in CS1 matter for key outcomes of interest to computing education researchers and educators and that the experience sampling method, more common in fields adjacent to computer science education, provides one way for researchers to integrate the experiences students have into our accounts of why students become interested in computing. 
    more » « less