skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The rational selection of goal operations and the integration of search strategies with goal-driven marine autonomy
Intelligent physical systems as embodied cognitive systems must perform high-level reasoning while concurrently managing an underlying control architecture. The link between cognition and control must manage the problem of converting continuous values from the real world to symbolic representations (and back). To generate effective behaviors, reasoning must include a capacity to replan, acquire and update new information, detect and respond to anomalies, and perform various operations on system goals. But, these processes are not independent and need further exploration. This paper examines an agent’s choices when multiple goal operations co-occur and interact, and it establishes a method of choosing between them. We demonstrate the benefits and discuss the trade offs involved with this and show positive results in a dynamic marine search task.  more » « less
Award ID(s):
1849131
PAR ID:
10352601
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the Ninth Annual Conference on Advances in Cognitive Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Goal management in autonomous agents has been a problem of interest for a long time. Multiple goal operations are required to solve an agent goal management problem. For example, some goal operations include selection, change, formulation, delegation, monitoring. Many researchers from different fields developed several solution approaches with an implicit or explicit focus on goal operations. For example, some solution approaches include scheduling the agents’ goals, performing cost-benefit analysis to select/organize goals, agent goal formulation in unexpected situations. However, none of them explicitly shed light on the agents’ response when multiple goal operations occur simultaneously. This paper develops an algorithm to address agent goal management when multiple-goal operations co-occur and presents how such an interaction would improve agent goal management in different domains. 
    more » « less
  2. Autonomous agents in a multi-agent system work with each other to achieve their goals. However, In a partially observable world, current multi-agent systems are often less effective in achieving their goals. This limitation is due to the agents’ lack of reasoning about other agents and their mental states. Another factor is the agents’ inability to share required knowledge with other agents. This paper addresses the limitations by presenting a general approach for autonomous agents to work together in a multi-agent system. In this approach, an agent applies two main concepts: goal reasoning- to determine what goals to pursue and share; Theory of mind-to select an agent(s) for sharing goals and knowledge. We evaluate the performance of our multi-agent system in a Marine Life Survey Domain and compare it to another multi-agent system that randomly selects agent(s) to delegates its goals. 
    more » « less
  3. Understanding what sequence of steps are needed to complete a goal can help artificial intelligence systems reason about human activities. Past work in NLP has examined the task of goal-step inference for text. We introduce the visual analogue. We propose the Visual Goal-Step Inference (VGSI) task, where a model is given a textual goal and must choose which of four images represents a plausible step towards that goal. With a new dataset harvested from wikiHow consisting of 772,277 images representing human actions, we show that our task is challenging for state-of-the-art multimodal models. Moreover, the multimodal representation learned from our data can be effectively transferred to other datasets like HowTo100m, increasing the VGSI accuracy by 15 - 20%. Our task will facilitate multimodal reasoning about procedural events. 
    more » « less
  4. Goal reasoning agents can solve novel problems by detecting an anomaly between expectations and observations, generating explanations about plausible causes for the anomaly, and formulating goals to remove the cause. Yet, not all anomalies represent problems. This paper addresses discerning the difference between benign anomalies and those that represent an actual problem for an agent. Furthermore, we present a new definition of the term “problem” in a goal reasoning context. This paper discusses the role of explanations and goal formulation in response to the developing problems and implements it; the paper also illustrates the above in a mine clearance domain and a labor relations domain. We also show the empirical difference between a standard planning agent, an agent that detects anomalies, and an agent that recognizes problems. 
    more » « less
  5. Cox, Michael T. (Ed.)
    Goal reasoning agents can solve novel problems by detecting an anomaly between expectations and observations; generating explanations about plausible causes for the anomaly; and formulating goals to remove the cause. Yet not all anomalies represent problems. We claim that the task of discerning the difference between benign anomalies and those that represent an actual problem by an agent will increase its performance. Furthermore, we present a new definition of the term “problem” in a goal reasoning context. This paper discusses the role of explanations and goal formulation in response to developing problems and implements the response. The paper illustrates goal formulation in a mine clearance domain and a labor relations domain. We also show the empirical difference between a standard planning agent, an agent that detects anomalies and an agent that recognizes problems. 
    more » « less