skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Emergence of a Nocturnal Low-Level Jet from a Broad Baroclinic Zone
Abstract An analytical model is presented for the generation of a Blackadar-like nocturnal low-level jet in a broad baroclinic zone. The flow is forced from below (flat ground) by a surface buoyancy gradient and from above (free atmosphere) by a constant pressure gradient force. Diurnally varying mixing coefficients are specified to increase abruptly at sunrise and decrease abruptly at sunset. With attention restricted to a surface buoyancy that varies linearly with a horizontal coordinate, the Boussinesq-approximated equations of motion, thermal energy, and mass conservation reduce to a system of one-dimensional equations that can be solved analytically. Sensitivity tests with southerly jets suggest that (i) stronger jets are associated with larger decreases of the eddy viscosity at sunset (as in Blackadar theory); (ii) the nighttime surface buoyancy gradient has little impact on jet strength; and (iii) for pure baroclinic forcing (no free-atmosphere geostrophic wind), the nighttime eddy diffusivity has little impact on jet strength, but the daytime eddy diffusivity is very important and has a larger impact than the daytime eddy viscosity. The model was applied to a jet that developed in fair weather conditions over the Great Plains from southern Texas to northern South Dakota on 1 May 2020. The ECMWF Reanalysis v5 (ERA5) for the afternoon prior to jet formation showed that a broad north–south-oriented baroclinic zone covered much of the region. The peak model-predicted winds were in good agreement with ERA5 winds and lidar data from the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) central facility in north-central Oklahoma.  more » « less
Award ID(s):
1921587
PAR ID:
10352620
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
79
Issue:
5
ISSN:
0022-4928
Page Range / eLocation ID:
1363 to 1383
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study extends the linear theory of Shapiro et al. (S18) for the onset of horizontal convergence and ascent in nocturnal boundary layers in baroclinic environments such as the U.S. Great Plains. In S18, the sudden decay of turbulence in a surface-based warm tongue at sunset triggers a surge of convergent inflow/ascent as well as a Blackadar-like nocturnal low-level jet. For conditions typical of broad warm-season surface-based baroclinic zones over the Great Plains, the S18 theory predicts that air parcels can rise 500 m–1 km before the onset of a descent phase. Such displacements may help sustain or initiate convection and play a role in the well-known nocturnal maximum in rainfall over the region. In this study, the Cloud Model 1 is used to examine the S18 predictions in a more realistic setting in which the nonlinear terms in the governing equations are retained, and the sudden shutdown of turbulence at sunset is replaced by a more gradual evening transition. A warm tongue arises in the simulated boundary layer over a 5-day period through a prescribed deficit in surface moisture which causes the greatest daytime heating in the domain center. As in S18, the simulations depict a surge of convergent flow, descent of the zone of peak ascent, replacement of the ascent zone by subsidence, peak vertical motion decreasing with latitude and warm tongue width, and the generation of free-atmosphere inertia–gravity waves. The divergence and vorticity fields are found to oscillate at the inertial frequency. 
    more » « less
  2. Abstract Weak but persistent synoptic-scale ascent may play a role in the initiation or maintenance of nocturnal convection over the central United States. An analytical model is used to explore the nocturnal low-level jets (NLLJ) and ascent that develop in an idealized diurnally varying frictional (Ekman) boundary layer in a neutrally stratified barotropic environment when the flow aloft is a zonally propagating Rossby wave. Steady-periodic solutions are obtained of the linearized Reynolds-averaged Boussinesq-approximated equations of motion on a beta plane with an eddy viscosity that is specified to increase abruptly at sunrise and decrease abruptly at sunset. Rayleigh damping terms are used to parameterize momentum loss due to radiation of inertia–gravity waves. The model-predicted vertical velocity is (approximately) proportional to the wavenumber and wave amplitude. There are two main modes of ascent in midlatitudes, an afternoon mode and a nocturnal mode. The latter arises as a gentle but persistent surge induced by the decrease of turbulence at sunset, the same mechanism that triggers inertial oscillations in the Blackadar theory of NLLJs. If the Rayleigh damping terms are omitted, the boundary layer depth becomes infinite at three critical latitudes, and the vertical velocity becomes infinite far above the ground at two of those latitudes. With the damping terms retained, the solution is well behaved. Peak daytime ascent in the model occurs progressively later in the afternoon at more southern locations (in the Northern Hemisphere) until the first (most northern) critical latitude is reached; south of that latitude the nocturnal mode is dominant. 
    more » « less
  3. Abstract The Southern Ocean's eddy response to changing climate remains unclear, with observations suggesting non‐monotonic changes in eddy kinetic energy (EKE) across scales. Here simulations reappear that smaller‐mesoscale EKE is suppressed while larger‐mesoscale EKE increases with strengthened winds. This change was linked to scale‐wise changes in the kinetic energy cycle, where a sensitive balance between the dominant mesoscale energy sinks—inverse KE cascade, and source—baroclinic energization. Such balance induced a strong (weak) mesoscale suppression in the flat (ridge) channel. Mechanistically, this mesoscale suppression is attributed to stronger zonal jets weakening smaller mesoscale eddies and promoting larger‐scale waves. These EKE multiscale changes lead to multiscale changes in meridional and vertical eddy transport, which can be parameterized using a scale‐dependent diffusivity linked to the EKE spectrum. This multiscale eddy response may have significant implications for understanding and modeling the Southern Ocean eddy activity and transport under a changing climate. 
    more » « less
  4. The mean state of the atmosphere and ocean is set through a balance between external forcing (radiation, winds, heat and freshwater fluxes) and the emergent turbulence, which transfers energy to dissipative structures. The forcing gives rise to jets in the atmosphere and currents in the ocean, which spontaneously develop turbulent eddies through the baroclinic instability. A critical step in the development of a theory of climate is to properly include the eddy-induced turbulent transport of properties like heat, moisture, and carbon. In the linear stages, baroclinic instability generates flow structures at the Rossby deformation radius, a length scale of order 1,000 km in the atmosphere and 100 km in the ocean, smaller than the planetary scale and the typical extent of ocean basins, respectively. There is, therefore, a separation of scales between the large-scale gradient of properties like temperature and the smaller eddies that advect it randomly, inducing effective diffusion. Numerical solutions show that such scale separation remains in the strongly nonlinear turbulent regime, provided there is sufficient drag at the bottom of the atmosphere and ocean. We compute the scaling laws governing the eddy-driven transport associated with baroclinic turbulence. First, we provide a theoretical underpinning for empirical scaling laws reported in previous studies, for different formulations of the bottom drag law. Second, these scaling laws are shown to provide an important first step toward an accurate local closure to predict the impact of baroclinic turbulence in setting the large-scale temperature profiles in the atmosphere and ocean. 
    more » « less
  5. Winds in the nighttime upper thermosphere are often observed to mimic the ionospheric plasma convection at polar latitudes, and whether the same is true for the daytime winds remains unclear. The dayside sector is subject to large temperature gradient set up by solar irradiance and it also contains the cusp, which is a hotspot of Poynting flux and a region with the strongest soft particle precipitation. We examine daytime winds using a Scanning Doppler Imager (SDI) located at the South Pole, and investigate their distribution under steadily positive and negative IMF Byconditions. The results show that daytime winds exhibit significant differences from the plasma convection. Under negative IMF Byconditions, winds flow in the same direction as the plasma zonally, but have a meridional component that is strongest in the auroral zone. As a result, winds are more poleward-directed than the plasma convection within the auroral zone, and more westward-directed in the polar cap. Under positive IMF Byconditions, winds can flow zonally against the plasma in certain regions. For instance, they flow westward in the polar cap despite the eastward plasma convection there, forming a large angle relative to the plasma convection. The results indicate that ion drag may not be the most dominant force for daytime winds. Although the importance of various forcing terms cannot be resolved with the utilized dataset, we speculate that the pressure gradient force in the presence of cusp heating serves as one important contributor. 
    more » « less