skip to main content


Title: Drivers of variability of Calanus finmarchicus in the Gulf of Maine: roles of internal production and external exchange
Abstract The lipid-rich calanoid copepod, Calanus finmarchicus, plays a critical role in the Gulf of Maine pelagic food web. Despite numerous studies over the last several decades, a clear picture of variability patterns and links with key environmental drivers remains elusive. This study applies model-based scaling and sensitivity analyses to a regional plankton dataset collected over the last four decades (1977–2017). The focus is to describe the gulf-wide spatio-temporal patterns across three major basins, and to assess the relative roles of internal population dynamics and external exchanges. For the spring stock, there is strong synchrony of interannual variability among three basins. This variability is largely driven by internal population dynamics rather than external exchanges, and the internal population dynamics are more sensitive to the change of top-down mortality regime than the bottom-up forcings. For the fall stock, the synchrony among basins weakens, and the variability is influenced by both internal mortality and external dilution loss. There appears to be no direct connection between the spring stock with either the preceding or subsequent fall stock, suggesting seasonal or sub-seasonal scales of population variability and associated drivers. The results highlight seasonally varying drivers responsible for population variability, including previously less recognized top-down control.  more » « less
Award ID(s):
1655686
NSF-PAR ID:
10352721
Author(s) / Creator(s):
; ; ;
Editor(s):
Woodson, Brock
Date Published:
Journal Name:
ICES Journal of Marine Science
Volume:
79
Issue:
3
ISSN:
1054-3139
Page Range / eLocation ID:
775 to 784
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding large‐scale migratory behaviours, local movement patterns and population connectivity are critical to determining the natural processes and anthropogenic stressors that influence population dynamics and for developing effective conservation plans. Atlantic tarpon occur over a broad geographic range in the Atlantic Ocean where they support valuable subsistence, commercial and recreational fisheries. From 2001 through 2018, we deployed 292 satellite telemetry tags on Atlantic tarpon in coastal waters off three continents to document: (a) seasonal migrations and regional population connectivity; (b) freshwater and estuarine habitat utilization; (c) spawning locations; and (d) shark predation across the south‐eastern United States, Gulf of Mexico and northern Caribbean Sea. These results showed that some mature tarpon make long seasonal migrations over thousands of kilometres crossing state and national jurisdictional borders. Others showed more local movements and habitat use. The tag data also revealed potential spawning locations consistent with those inferred in other studies from observations of early life stage tarpon leptocephalus larvae. Our analyses indicated that shark predation mortality on released tarpon is higher than previously estimated, especially at ocean passes, river mouths and inlets to bays. To date, there has been no formal stock assessment of Atlantic tarpon, and regional fishery management plans do not exist. Our findings will provide critical input to these important efforts and assist the multinational community in the development of a stock‐wide management information system to support informed decision‐making for sustaining Atlantic tarpon fisheries.

     
    more » « less
  2. Abstract

    Natural resources often exhibit large interannual fluctuations in productivity driven by shifting environmental conditions, and this translates to high variability in the revenue resource users earn. However, users can dampen this variability by harvesting a portfolio of resources. In the context of fisheries, this means targeting multiple populations, though the ability to actually build diverse fishing portfolios is often constrained by the costs and availability of fishing permits. These constraints are generally intended to prevent overcapitalization of the fleet and ensure populations are fished sustainably. As linked human‐natural systems, both ecological and fishing dynamics influence the specific advantages and disadvantages of increasing the diversity of fishing portfolios. Specifically, a portfolio of synchronous populations with similar responses to environmental drivers should reduce revenue variability less than a portfolio of asynchronous populations with opposite responses. We built a bioeconomic model based on the Dungeness crab (Metacarcinus magister), Chinook salmon (Oncorhynchus tshawytscha), and groundfish fisheries in the California Current, and used it to explore the influence of population synchrony and permit access on income patterns. As expected, synchronous populations reduced revenue variability less than asynchronous populations, but only for portfolios including crab and salmon. Synchrony with the longer‐lived groundfish population was not important because environmentally driven changes in groundfish recruitment were mediated by growth and natural mortality over the full population age structure, and overall biomass was relatively stable across years. Thus, building a portfolio of diverse life histories can buffer against the impacts of poor environmental conditions over short time scales. Increasing access to all permits generally led to increased revenue stability and decreased inequality of the fleet, but also resulted in less revenue earned by an individual from a given portfolio because more vessels shared the available biomass. This means managers are faced with a trade‐off between the average revenue individuals earn and the risk those individuals accept. These results illustrate the importance of considering connections between social and ecological dynamics when evaluating management options that constrain or facilitate fishers’ ability to diversify their fishing.

     
    more » « less
  3. Abstract

    Most observed patterns of recent Arctic surface warming and sea ice loss lie outside of unforced internal climate variability. In contrast, human influence on related changes in outgoing longwave radiation has not been assessed. Outgoing longwave radiation captures the flow of thermal energy from the surface through the atmosphere to space, making it an essential indicator of Arctic change. Furthermore, satellites have measured pan-Arctic radiation for two decades while surface temperature observations remain spatially and temporally sparse. Here, two climate model initial-condition large ensembles and satellite observations are used to investigate when and why twenty-first-century Arctic outgoing longwave radiation changes emerge from unforced internal climate variability. Observationally, outgoing longwave radiation changes from 2001 to 2021 are within the range of unforced internal variability for all months except October. The model-predicted timing of Arctic longwave radiation emergence varies throughout the year. Specifically, fall emergence occurs a decade earlier than spring emergence. These large emergence timing differences result from seasonally dependent sea ice loss and surface warming. The atmosphere and clouds then widen these seasonal differences by delaying emergence more in the spring and winter than in the fall. Finally, comparison of the two ensembles shows that more sea ice and a more transparent atmosphere during the melt season led to an earlier emergence of forced longwave radiation changes. Overall, these findings demonstrate that attributing changes in Arctic outgoing longwave radiation to human influence requires understanding the seasonality of both forced change and internal climate variability.

     
    more » « less
  4. Kelp beds provide significant ecosystem services and socioeconomic benefits globally, and prominently in coastal zones of the California Current. Their distributions and abundance, however, vary greatly over space and time. Here, we describe long-term patterns of Giant Kelp (Macrocystis pyrifera) sea surface canopy area off the coast of San Diego County from 1983 through 2019 along with recent patterns of water column nitrate (NO3-) exposure inferred fromin situtemperature data in 2014 and 2015 at sites spanning 30 km of the coastline near San Diego California, USA. Site-specific patterns of kelp persistence and resilience were associated with ocean and climate dynamics, with total sea surface kelp canopy area varying approximately 33-fold over the almost 4 decades (min 0.34 km2in 1984; max 11.25 km2in 2008, median 4.79 km2). Site-normalized canopy areas showed that recent kelp persistence since 2014 was greater at Point Loma and La Jolla, the largest kelp beds off California, than at the much smaller kelp bed off Cardiff. NO3-exposure was estimated from an 11-month time series ofin situwater column temperature collected in 2014 and 2015 at 4 kelp beds, using a relationship between temperature and NO3-concentration previously established for the region. The vertical position of the 14.5°C isotherm, an indicator of the main thermocline and nutricline, varied across the entire water column at semidiurnal to seasonal frequencies. We use a novel means of quantifying estimated water column NO3-exposure integrated through time (mol-days m-2) adapted from degree days approaches commonly used to characterize thermal exposures. Water column integrated NO3-exposure binned by quarters of the time series showed strong seasonal differences with highest exposure in Mar - May 2015, lowest exposure in Sep - Dec 2014, with consistently highest exposure off Point Loma. The water column integrated NO3-signal was filtered to provide estimates of the contribution to total nitrate exposure from high frequency variability (ƒ >= 1 cycle 30 hr-1) associated predominantly with internal waves, and low frequency variability driven predominantly by seasonal upwelling. While seasonal upwelling accounted for > 90% of NO3-exposure across the full year, during warm periods when seasonal upwelling was reduced or absent and NO3-exposure was low overall, the proportion due to internal waves increased markedly to 84 to 100% of the site-specific total exposure. The high frequency variability associated with internal waves may supply critical nutrient availability during anomalously warm periods. Overall, these analyses support a hypothesis that differences in NO3-exposure among sites due to seasonal upwelling and higher frequency internal wave forcing contribute to spatial patterns in Giant Kelp persistence in southern California. The study period includes anomalously warm surface conditions and the marine heatwave associated with the “Pacific Warm Blob” superimposed on the seasonal thermal signal and corresponding to the onset of a multi-year decline in kelp canopy area and marked differences in kelp persistence among sites. Our analysis suggests that, particularly during periods of warm surface conditions, variation in NO3-exposure associated with processes occurring at higher frequencies, including internal waves can be a significant source of NO3-exposure to kelp beds in this region. The patterns described here also offer a view of the potential roles of seasonal and higher frequency nutrient dynamics for Giant Kelp persistence in southern California under continuing ocean surface warming and increasing frequency and intensity of marine heatwaves.

     
    more » « less
  5. Abstract Killer whales ( Orcinus orca ) are top predators throughout the world’s oceans. In the North Pacific, the species is divided into three ecotypes—resident (fish-eating), transient (mammal-eating), and offshore (largely shark-eating)—that are genetically and acoustically distinct and have unique roles in the marine ecosystem. In this study, we examined the year-round distribution of killer whales in the northern Gulf of Alaska from 2016 to 2020 using passive acoustic monitoring. We further described the daily acoustic residency patterns of three killer whale populations (southern Alaska residents, Gulf of Alaska transients, and AT1 transients) for one year of these data. Highest year-round acoustic presence occurred in Montague Strait, with strong seasonal patterns in Hinchinbrook Entrance and Resurrection Bay. Daily acoustic residency times for the southern Alaska residents paralleled seasonal distribution patterns. The majority of Gulf of Alaska transient detections occurred in Hinchinbrook Entrance in spring. The depleted AT1 transient killer whale population was most often identified in Montague Strait. Passive acoustic monitoring revealed that both resident and transient killer whales used these areas much more extensively than previously known and provided novel insights into high use locations and times for each population. These results may be driven by seasonal foraging opportunities and social factors and have management implications for this species. 
    more » « less