skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multiwavelength optical and NIR variability analysis of the Blazar PKS 0027-426
ABSTRACT We present multiwavelength spectral and temporal variability analysis of PKS 0027-426 using optical griz observations from Dark Energy Survey between 2013 and 2018 and VEILS Optical Light curves of Extragalactic TransienT Events (VOILETTE) between 2018 and 2019 and near-infrared (NIR) JKs observations from Visible and Infrared Survey Telescope for Astronomy Extragalactic Infrared Legacy Survey (VEILS) between 2017 and 2019. Multiple methods of cross-correlation of each combination of light curve provides measurements of possible lags between optical–optical, optical–NIR, and NIR–NIR emission, for each observation season and for the entire observational period. Inter-band time lag measurements consistently suggest either simultaneous emission or delays between emission regions on time-scales smaller than the cadences of observations. The colour–magnitude relation between each combination of filters was also studied to determine the spectral behaviour of PKS 0027-426. Our results demonstrate complex colour behaviour that changes between bluer when brighter, stable when brighter, and redder when brighter trends over different time-scales and using different combinations of optical filters. Additional analysis of the optical spectra is performed to provide further understanding of this complex spectral behaviour.  more » « less
Award ID(s):
1901296
PAR ID:
10352762
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
510
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
3145 to 3177
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract On July 30th, 2019 IceCube detected a high-energy astrophysical muon neutrino candidate, IC-190730A with a 67% probability of astrophysical origin. The flat spectrum radio quasar (FSRQ) PKS 1502 +106 is in the error circle of the neutrino. Motivated by this observation, we study PKS 1502+106 as a possible source of IC-190730A. PKS 1502+106 was in a quiet state in terms of UV/optical/X-ray/γ-ray flux at the time of the neutrino alert, we therefore model the expected neutrino emission from the source during its average long-term state, and investigate whether the emission of IC-190730A as a result of the quiet long-term emission of PKS 1502+106 is plausible. We analyse UV/optical and X-ray data and collect additional observations from the literature to construct the multi-wavelength spectral energy distribution of PKS 1502+106. We perform leptohadronic modelling of the multi-wavelength emission of the source and determine the most plausible emission scenarios and the maximum expected accompanying neutrino flux. A model in which the multi-wavelength emission of PKS 1502+106 originates beyond the broad-line region and inside the dust torus is most consistent with the observations. In this scenario, PKS 1502+106 can have produced up to of order one muon neutrino with energy exceeding 100 TeV in the lifetime of IceCube. An appealing feature of this model is that the required proton luminosity is consistent with the average required proton luminosity if blazars power the observed ultra-high-energy-cosmic-ray flux and well below the source's Eddington luminosity. If such a model is ubiquitous among FSRQs, additional neutrinos can be expected from other bright sources with energy ≳ 10 PeV. 
    more » « less
  2. Abstract We present the largest optical photometry compilation of Gamma-Ray Bursts (GRBs) with redshifts (z). We include 64813 observations of 535 events (including upper limits) from 28 February 1997 to 18 August 2023. We also present a user-friendly web tool grbLC which allows users to visualise photometry, coordinates, redshift, host galaxy extinction, and spectral indices for each event in our database. Furthermore, we have added a Gamma-ray Coordinate Network (GCN) scraper that can be used to collect data by gathering magnitudes from the GCNs. The web tool also includes a package for uniformly investigating colour evolution. We compute the optical spectral indices for 138 GRBs, for which we have at least 4 filters at the same epoch in our sample, and craft a procedure to distinguish between GRBs with and without colour evolution. By providing a uniform format and repository for the optical catalogue, this web-based archive is the first step towards unifying several community efforts to gather the photometric information for all GRBs with known redshifts. This catalogue will enable population studies by providing light curves (LCs) with better coverage since we have gathered data from different ground-based locations. Consequently, these LCs can be used to train future LC reconstructions for an extended inference of the redshift. The data gathering also allows us to fill some of the orbital gaps from Swift in crucial points of the LCs, e.g., at the end of the plateau emission or where a jet break is identified. 
    more » « less
  3. Abstract We present optical and near-infrared (NIR, Y - , J - , H- band) observations of 42 Type Ia supernovae (SNe Ia) discovered by the untargeted intermediate Palomar Transient Factory survey. This new data set covers a broad range of redshifts and host galaxy stellar masses, compared to previous SN Ia efforts in the NIR. We construct a sample, using also literature data at optical and NIR wavelengths, to examine claimed correlations between the host stellar masses and the Hubble diagram residuals. The SN magnitudes are corrected for host galaxy extinction using either a global total-to-selective extinction ratio, R V = 2.0, for all SNe, or a best-fit R V for each SN individually. Unlike previous studies that were based on a narrower range in host stellar mass, we do not find evidence for a “mass step,” between the color- and stretch-corrected peak J and H magnitudes for galaxies below and above log ( M * / M ⊙ ) = 10 . However, the mass step remains significant (3 σ ) at optical wavelengths ( g , r , i ) when using a global R V , but vanishes when each SN is corrected using their individual best-fit R V . Our study confirms the benefits of the NIR SN Ia distance estimates, as these are largely exempted from the empirical corrections dominating the systematic uncertainties in the optical. 
    more » « less
  4. Context.Dark gamma-ray bursts (GRBs) constitute a significant fraction of the GRB population. In this paper, we present a multi-wavelength analysis (both prompt emission and afterglow) of an intense (3.98  ×  10−5erg cm−2usingFermi-Gamma-Ray Burst Monitor) two-episodic GRB 150309A observed early on until ∼114 days post burst. Despite the strong gamma-ray emission, no optical afterglow was detected for this burst. However, we discovered near-infrared (NIR) afterglow (KS-band), ∼5.2 h post burst, with the CIRCE instrument mounted at the 10.4 m Gran Telescopio Canarias (hereafter, GTC). Aims.We aim to examine the characteristics of GRB 150309A as a dark burst and to constrain other properties using multi-wavelength observations. Methods.We usedFermiobservations of GRB 150309A to understand the prompt emission mechanisms and jet composition. We performed early optical observations using the BOOTES robotic telescope and late-time afterglow observations using the GTC. A potential faint host galaxy was also detected in the optical wavelength using the GTC. We modelled the potential host galaxy of GRB 150309A in order to explore the environment of the burst. Results.The time-resolved spectral analysis ofFermidata indicates a hybrid jet composition consisting of a matter-dominated fireball and magnetic-dominated Poynting flux. The GTC observations of the afterglow revealed that the counterpart of GRB 150309A was very red, withH − KS > 2.1 mag (95% confidence). The red counterpart was not discovered in any bluer filters ofSwiftUVOT/BOOTES, which would be indicative of a high redshift origin. Therefore we discarded this possibility based on multiple arguments, such as spectral analysis of the X-ray afterglow constrainz < 4.15 and a moderate redshift value obtained using the spectral energy distribution (SED) modelling of the potential galaxy. The broadband (X-ray to NIR bands) afterglow SED implies a very dusty host galaxy with a deeply embedded GRB (suggestingAV ≳ 35 mag). Conclusions.The environment of GRB 150309A demands a high extinction towards the line of sight. Demanding dust obscuration is the most probable origin of optical darkness as well as the very red afterglow of GRB 150309A. This result establishes GRB 150309A as the most extinguished GRB known to date. 
    more » « less
  5. Abstract We present the first results of JWST Cycle 1 and 2 observations of Sgr A* using NIRCam taken simultaneously at 2.1 and 4.8μm for a total of ∼48 hr over seven different epochs in 2023 and 2024. We find correlated variability at 2.1 and 4.8μm in all epochs, continual short-timescale (a few seconds) variability, and epoch-to-epoch variable emission implying long-term (∼days to months) variability of Sgr A*. A highlight of this analysis is the evidence for subminute, horizon-scale time variability of Sgr A*, probing inner accretion disk size scales. The power spectra of the light curves in each observing epoch also indicate long-term variable emission. With continuous observations, JWST data suggest that the flux of Sgr A* is fluctuating constantly. The flux density correlation exhibits a distinct break in the slope at ∼3 mJy at 2.1μm. The analysis indicates two different processes contributing to the variability of Sgr A*. Brighter emission trends toward shallower spectral indices than the fainter emission. Cross-correlation of the light curves indicates for the first time a time delay of 3–40 s in the 4.8μm variability with respect to 2.1μm. This phase shift leads to loops in plots of flux density versus spectral index as the emission rises and falls. Modeling suggests that the synchrotron emission from the evolving, age-stratified electron population reproduces the shape of the observed light curves with a direct estimate of the magnetic field strengths in the range between 40 and 90 G and an upper cutoff energy,Ec, between 420 and 720 MeV. 
    more » « less