Understanding the detailed properties of stars in the infrared is of critical importance with new missions focusing on the infrared (JWST, Roman). The ground-based wide-field infrared instrument, FourStar, on the Magellan telescope contains a number of medium band filters that are optimized for photometric redshifts, but also provide nearly continuous spectral coverage for stars. These filters, however, lack absolute calibration. In this project, we adapted a technique used for galaxies to be used for stars. We used multi-band photometry to fit a likely SED model to each star and then generated synthetic photometry from the SED model to produce the magnitude of the star in a given filter. Statistically, we then determined the zero point in each filter in each image. This will be used to calibrate a large survey aiming to better understand near-infrared properties of stars for application to the extragalactic distance scale (with JWST and Roman).
more »
« less
A Semi-Empirical Approach for Photometric Zeropoints Using Stars
Understanding the detailed properties of stars in the infrared is of critical importance with new missions focusing on the infrared (JWST, Roman). The ground-based wide-field infrared instrument, FourStar, on the Magellan telescope contains a number of medium band filters that are optimized for photometric redshifts, but also provide nearly continuous spectral coverage for stars. These filters, however, lack absolute calibration. In this project, we adapted a technique used for galaxies to be used for stars. We used multi-band photometry to fit a likely SED model to each star and then generated synthetic photometry from the SED model to produce the magnitude of the star in a given filter. Statistically, we then determined the zero point in each filter in each image. This will be used to calibrate a large survey aiming to better understand near-infrared properties of stars for application to the extragalactic distance scale (with JWST and Roman).
more »
« less
- PAR ID:
- 10654769
- Publisher / Repository:
- 245th Meeting of the American Astronomical Society, id. 353.23. Bulletin of the American Astronomical Society, Vol. 57, No. 2 e-id 2025n2i353 p23
- Date Published:
- Volume:
- 57
- Issue:
- 2
- Page Range / eLocation ID:
- 23
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present new color transformations between select near-infrared filters on JWST/NIRCam, Euclid/NISP, Roman/WFI, HST, and ground-basedizY+IJHKS, for a total of 105 unique filter combinations. Additionally, we apply these transformations to predict the color–magnitude relation of the tip of the red giant branch as seen with JWST, Euclid, and Roman based on theoretical results for Hubble Space Telescope and Two Micron All Sky Survey filters; for JWST we find good agreement with empirical results in the literature. We also find typical residual dispersion around these transformations of 0.01 mag for Cepheid and RR Lyrae variables and RGB stars, but up to 0.1 mag for O- and C-rich TP-AGB stars.more » « less
-
null (Ed.)ABSTRACT We use a sample of 350 star-forming galaxies at 1.25 < z < 2.66 from the Multi-Object Spectrograph For Infra-Red Exploration (MOSFIRE) Deep Evolution Field survey to demonstrate an improved Voronoi binning technique that we use to study the properties of resolved stellar populations in z ∼ 2 galaxies. Stellar population and dust maps are constructed from the high-resolution CANDELS/3D-HST multiband imaging. Rather than constructing the layout of resolved elements (i.e. Voronoi bins) from the signal-to-noise (S/N) distribution of the H160-band alone, we introduce a modified Voronoi binning method that additionally incorporates the S/N distribution of several resolved filters. The spectral energy distribution (SED)-derived resolved E(B − V)stars, stellar population ages, star-formation rates (SFRs), and stellar masses that are inferred from the Voronoi bins constructed from multiple filters are generally consistent with the properties inferred from the integrated photometry within the uncertainties, with the exception of the inferred E(B − V)stars from our z ∼ 1.5 sample due to their UV slopes being unconstrained by the resolved photometry. The results from our multifilter Voronoi binning technique are compared to those derived from a ‘traditional’ single-filter Voronoi binning approach. We find that single-filter binning produces inferred E(B − V)stars that are systematically redder by 0.02 mag, on average, but could differ by up to 0.20 mag and could be attributed to poorly constrained resolved photometry covering the UV slope. Overall, we advocate that our methodology produces more reliable SED-derived parameters due to the best-fitting resolved SEDs being better constrained at all resolved wavelengths – particularly those covering the UV slope.more » « less
-
ABSTRACT We present a mock image catalogue of ∼100 000 MUV ≃ −22.5 to −19.6 mag galaxies at z = 7–12 from the bluetides cosmological simulation. We create mock images of each galaxy with the James Webb Space Telescope (JWST), Hubble, Roman, and Euclid Space Telescopes, as well as Subaru, and VISTA, with a range of near- and mid-infrared filters. We perform photometry on the mock images to estimate the success of these instruments for detecting high-z galaxies. We predict that JWST will have unprecedented power in detecting high-z galaxies, with a 95 per cent completeness limit at least 2.5 mag fainter than VISTA and Subaru, 1.1 mag fainter than Hubble, and 0.9 mag fainter than Roman, for the same wavelength and exposure time. Focusing on JWST, we consider a range of exposure times and filters, and find that the NIRCam F356W and F277W filters will detect the faintest galaxies, with 95 per cent completeness at m ≃ 27.4 mag in 10-ks exposures. We also predict the number of high-z galaxies that will be discovered by upcoming JWST imaging surveys. We predict that the COSMOS-Web survey will detect ∼1000 M1500 Å < −20.1 mag galaxies at 6.5 < z < 7.5, by virtue of its large survey area. JADES-Medium will detect almost $$100{{\ \rm per\ cent}}$$ of M1500 Å ≲ −20 mag galaxies at z < 8.5 due to its significant depth, however, with its smaller survey area it will detect only ∼100 of these galaxies at 6.5 < z < 7.5. Cosmic variance results in a large range in the number of predicted galaxies each survey will detect, which is more evident in smaller surveys such as CEERS and the PEARLS NEP and GOODS-S fields.more » « less
-
Abstract We conducted an in-depth analysis of candidate member stars located in the peripheries of three ultra-faint dwarf (UFD) galaxy satellites of the Milky Way (MW): Boötes I (Boo1), Boötes II (Boo2), and Segue I (Seg1). Studying these peripheral stars has previously been difficult due to contamination from the MW foreground. We usedu-band photometry from the Dark Energy Camera (DECam) to derive metallicities to efficiently select UFD candidate member stars. This approach was validated on Boo1, where we identified both previously known and new candidate member stars beyond five half-light radii. We then applied a similar procedure to Boo2 and Seg1. Our findings hinted at evidence for tidal features in Boo1 and Seg1, with Boo1 having an elongation consistent with its proper motion and Seg1 showing some distant candidate stars, a few of which are along its elongation and proper motion. We find two Boo2 stars at large distances consistent with being candidate member stars. Using a foreground contamination rate derived from the Besançon Galaxy model, we ascribed purity estimates to each candidate member star. We recommend further spectroscopic studies on the newly identified high-purity members. Our technique offers promise for future endeavors to detect candidate member stars at large radii in other systems, leveraging metallicity-sensitive filters with the Legacy Survey of Space and Time and the new, narrowband Ca HK filter on DECam.more » « less
An official website of the United States government

