skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep Convolutional Neural Networks for Comprehensive Structural Health Monitoring and Damage Detection
Vision-based structural health monitoring (SHM) has become an important approach to recognize and evaluate structural damage after natural disasters. Deep convolutional neural networks (CNNs) have recently attained a breakthrough in computer vision field, in particular for image classification task. In this article, we adopted deep residual neural network (ResNet) whose residual representations and shortcut connections mechanism has gained significant performance in various computer vision tasks. In addition, we applied transfer learning due to a relatively small number of training images. To test our approach, we used the dataset from the 2018 PEER Hub ImageNet Challenge distributed by Pacific Earthquake Engineering Research Center. This challenge proposed eight structural damage detection tasks: scene classification, damage check, spalling condition, material type, collapse check, component type, damage level and damage type which can be categorized as binary and multi-class (3 or 4 classes) classification problems. Our experiments with eight different tasks showed that reliable classification can be obtained for some tasks. Corresponding above eight tasks, classification accuracy varied from 63.1% to 99.4%. Our approach has attained third place for overall tasks in this challenge. Through the individual observation of training dataset, it is found that there are a large number of confusing images. Therefore, it is believed that the accuracy will be improved after making a precise training data.  more » « less
Award ID(s):
2036193
PAR ID:
10352802
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
12th International Workshop on Structural Health Monitoring
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We propose a semi-supervised learning approach for video classification, VideoSSL, using convolutional neural networks (CNN). Like other computer vision tasks, existing supervised video classification methods demand a large amount of labeled data to attain good performance. However, annotation of a large dataset is expensive and time consuming. To minimize the dependence on a large annotated dataset, our proposed semi-supervised method trains from a small number of labeled examples and exploits two regulatory signals from unlabeled data. The first signal is the pseudo-labels of unlabeled examples computed from the confidences of the CNN being trained. The other is the normalized probabilities, as predicted by an image classifier CNN, that captures the information about appearances of the interesting objects in the video. We show that, under the supervision of these guiding signals from unlabeled examples, a video classification CNN can achieve impressive performances utilizing a small fraction of annotated examples on three publicly available datasets: UCF101, HMDB51, and Kinetics. 
    more » « less
  2. This paper presents a few comprehensive experimental studies for automated Structural Damage Detection (SDD) in extreme events using deep learning methods for processing 2D images. In the first study, a 152-layer Residual network (ResNet) is utilized to classify multiple classes in eight SDD tasks, which include identification of scene levels, damage levels, and material types. The proposed ResNet achieved high accuracy for each task while the positions of the damage are not identifiable. In the second study, the existing ResNet and a segmentation network (U-Net) are combined into a new pipeline, cascaded networks, for categorizing and locating structural damage. The results show that the accuracy of damage detection is significantly improved compared to only using a segmentation network. In the third and fourth studies, end-to-end networks are developed and tested as a new solution to directly detect cracks and spalling in the image collections of recent large earthquakes. One of the proposed networks can achieve an accuracy above 67 .6% for all tested images at various scales and resolutions, and shows its robustness for these human-free detection tasks. As a preliminary field study, we applied the proposed method to detect damage in a concrete structure that was tested to study its progressive collapse performance. The experiments indicate that these solutions for automatic detection of structural damage using deep learning methods are feasible and promising. The training datasets and codes will be made available for the public upon the publication of this paper. 
    more » « less
  3. Abstract. In this paper, two different convolutional neural networks (CNNs) are applied on images for automated structural damage detection (SDD) in earthquake damaged structures and cracking localization (e.g., detection of cracks, their widths and distributions) at various scales, such as pixel level, object level, and structural level. The proposed method has two main steps: 1) diagnosis, and 2) localization of cracking or other damage. At first a residual CNN with transfer learning is employed to classify the damage in the structures and structural components. This step performs damage detection using two public datasets. The second step uses another CNN with U-Net structure to locate the cracking on low resolution images. The implementations using public and self-collected datasets show promising performance for a problem that had remained a challenge in the structure engineering field for a long time and indicate that the proposed approach can perform detection and localization of structural damage with an acceptable accuracy. 
    more » « less
  4. null (Ed.)
    Low-power computer vision on embedded devices has many applications. This paper describes a low-power technique for the object re-identification (reID) problem: matching a query image against a gallery of previously-seen images. State-of-the-art techniques rely on large, computationally-intensive Deep Neural Networks (DNNs). We propose a novel hierarchical DNN architecture that uses attribute labels in the training dataset to perform efficient object reID. At each node in the hierarchy, a small DNN identifies a different attribute of the query image. The small DNN at each leaf node is specialized to re-identify a subset of the gallery---only the images with the attributes identified along the path from the root to a leaf. Thus, a query image is re-identified accurately after processing with a few small DNNs. We compare our method with state-of-the-art object reID techniques. With a ~4% loss in accuracy, our approach realizes significant resource savings: 74% less memory, 72% fewer operations, and 67% lower query latency, yielding 65% less energy consumption. 
    more » « less
  5. Rolling shutter distortion is highly undesirable for photography and computer vision algorithms (e.g., visual SLAM) because pixels can be potentially captured at different times and poses. In this paper, we propose a deep neural network to predict depth and row-wise pose from a single image for rolling shutter correction. Our contribution in this work is to incorporate inertial measurement unit (IMU) data into the pose refinement process, which, compared to the state-of-the-art, greatly enhances the pose prediction. The improved accuracy and robustness make it possible for numerous vision algorithms to use imagery captured by rolling shutter cameras and produce highly accurate results. We also extend a dataset to have real rolling shutter images, IMU data, depth maps, camera poses, and corresponding global shutter images for rolling shutter correction training. We demonstrate the efficacy of the proposed method by evaluating the performance of Direct Sparse Odometry (DSO) algorithm on rolling shutter imagery corrected using the proposed approach. Results show marked improvements of the DSO algorithm over using uncorrected imagery, validating the proposed approach. 
    more » « less