skip to main content


Title: Deep Convolutional Neural Networks for Comprehensive Structural Health Monitoring and Damage Detection
Vision-based structural health monitoring (SHM) has become an important approach to recognize and evaluate structural damage after natural disasters. Deep convolutional neural networks (CNNs) have recently attained a breakthrough in computer vision field, in particular for image classification task. In this article, we adopted deep residual neural network (ResNet) whose residual representations and shortcut connections mechanism has gained significant performance in various computer vision tasks. In addition, we applied transfer learning due to a relatively small number of training images. To test our approach, we used the dataset from the 2018 PEER Hub ImageNet Challenge distributed by Pacific Earthquake Engineering Research Center. This challenge proposed eight structural damage detection tasks: scene classification, damage check, spalling condition, material type, collapse check, component type, damage level and damage type which can be categorized as binary and multi-class (3 or 4 classes) classification problems. Our experiments with eight different tasks showed that reliable classification can be obtained for some tasks. Corresponding above eight tasks, classification accuracy varied from 63.1% to 99.4%. Our approach has attained third place for overall tasks in this challenge. Through the individual observation of training dataset, it is found that there are a large number of confusing images. Therefore, it is believed that the accuracy will be improved after making a precise training data.  more » « less
Award ID(s):
2036193
NSF-PAR ID:
10352802
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
12th International Workshop on Structural Health Monitoring
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a few comprehensive experimental studies for automated Structural Damage Detection (SDD) in extreme events using deep learning methods for processing 2D images. In the first study, a 152-layer Residual network (ResNet) is utilized to classify multiple classes in eight SDD tasks, which include identification of scene levels, damage levels, and material types. The proposed ResNet achieved high accuracy for each task while the positions of the damage are not identifiable. In the second study, the existing ResNet and a segmentation network (U-Net) are combined into a new pipeline, cascaded networks, for categorizing and locating structural damage. The results show that the accuracy of damage detection is significantly improved compared to only using a segmentation network. In the third and fourth studies, end-to-end networks are developed and tested as a new solution to directly detect cracks and spalling in the image collections of recent large earthquakes. One of the proposed networks can achieve an accuracy above 67 .6% for all tested images at various scales and resolutions, and shows its robustness for these human-free detection tasks. As a preliminary field study, we applied the proposed method to detect damage in a concrete structure that was tested to study its progressive collapse performance. The experiments indicate that these solutions for automatic detection of structural damage using deep learning methods are feasible and promising. The training datasets and codes will be made available for the public upon the publication of this paper.

     
    more » « less
  2. null (Ed.)
    We propose a semi-supervised learning approach for video classification, VideoSSL, using convolutional neural networks (CNN). Like other computer vision tasks, existing supervised video classification methods demand a large amount of labeled data to attain good performance. However, annotation of a large dataset is expensive and time consuming. To minimize the dependence on a large annotated dataset, our proposed semi-supervised method trains from a small number of labeled examples and exploits two regulatory signals from unlabeled data. The first signal is the pseudo-labels of unlabeled examples computed from the confidences of the CNN being trained. The other is the normalized probabilities, as predicted by an image classifier CNN, that captures the information about appearances of the interesting objects in the video. We show that, under the supervision of these guiding signals from unlabeled examples, a video classification CNN can achieve impressive performances utilizing a small fraction of annotated examples on three publicly available datasets: UCF101, HMDB51, and Kinetics. 
    more » « less
  3. null (Ed.)
    Low-power computer vision on embedded devices has many applications. This paper describes a low-power technique for the object re-identification (reID) problem: matching a query image against a gallery of previously-seen images. State-of-the-art techniques rely on large, computationally-intensive Deep Neural Networks (DNNs). We propose a novel hierarchical DNN architecture that uses attribute labels in the training dataset to perform efficient object reID. At each node in the hierarchy, a small DNN identifies a different attribute of the query image. The small DNN at each leaf node is specialized to re-identify a subset of the gallery---only the images with the attributes identified along the path from the root to a leaf. Thus, a query image is re-identified accurately after processing with a few small DNNs. We compare our method with state-of-the-art object reID techniques. With a ~4% loss in accuracy, our approach realizes significant resource savings: 74% less memory, 72% fewer operations, and 67% lower query latency, yielding 65% less energy consumption. 
    more » « less
  4. The unprecedented growth in mobile systems has transformed the way we approach everyday computing. Unfortunately, the emergence of a sophisticated type of malware known as ransomware poses a great threat to consumers of this technology. Traditional research on mobile malware detection has focused on approaches that rely on analyzing bytecode for uncovering malicious apps. However, cybercriminals can bypass such methods by embedding malware directly in native machine code, making traditional methods inadequate. Another challenge that detection solutions face is scalability. The sheer number of malware variants released every year makes it difficult for solutions to efficiently scale their coverage. To address these concerns, this work presents RansomShield, an energy-efficient solution that leverages CNNs to detect ransomware. We evaluate CNN architectures that have been known to perform well on computer vision tasks and examine their suitability for ransomware detection. We show that systematically converting native instructions from Android apps into images using space-filling curve visualization techniques enable CNNs to reliably detect ransomware with high accuracy. We characterize the robustness of this approach across ARM and x86 architectures and demonstrate the effectiveness of this solution across heterogeneous platforms including smartphones and chromebooks. We evaluate the suitability of different models for mobile systems by comparing their energy demands using different platforms. In addition, we present a CNN introspection framework that determines the important features that are needed for ransomware detection. Finally, we evaluate the robustness of this solution against adversarial machine learning (AML) attacks using state-of-the-art Android malware dataset. 
    more » « less
  5. Multi-task learning has been widely adopted in many computer vision tasks to improve overall computation efficiency or boost the performance of individual tasks, under the assumption that those tasks are correlated and complementary to each other. However, the relationships between the tasks are complicated in practice, especially when the number of involved tasks scales up. When two tasks are of weak relevance, they may compete or even distract each other during joint training of shared parameters, and as a consequence undermine the learning of all the tasks. This will raise destructive interference which decreases learning efficiency of shared parameters and lead to low quality loss local optimum w.r.t. shared parameters. To address the this problem, we propose a general modulation module, which can be inserted into any convolutional neural network architecture, to encourage the coupling and feature sharing of relevant tasks while disentangling the learning of irrelevant tasks with minor parameters addition. Equipped with this module, gradient directions from different tasks can be enforced to be consistent for those shared parameters, which benefits multi-task joint training. The module is end-to-end learnable without ad-hoc design for specific tasks, and can naturally handle many tasks at the same time. We apply our approach on two retrieval tasks, face retrieval on the CelebA dataset [1] and product retrieval on the UT-Zappos50K dataset [2, 3], and demonstrate its advantage over other multi-task learning methods in both accuracy and storage efficiency. 
    more » « less