skip to main content

Abstract. In this paper, two different convolutional neural networks (CNNs) are applied on images for automated structural damage detection (SDD) in earthquake damaged structures and cracking localization (e.g., detection of cracks, their widths and distributions) at various scales, such as pixel level, object level, and structural level. The proposed method has two main steps: 1) diagnosis, and 2) localization of cracking or other damage. At first a residual CNN with transfer learning is employed to classify the damage in the structures and structural components. This step performs damage detection using two public datasets. The second step uses another CNN with U-Net structure to locate the cracking on low resolution images. The implementations using public and self-collected datasets show promising performance for a problem that had remained a challenge in the structure engineering field for a long time and indicate that the proposed approach can perform detection and localization of structural damage with an acceptable accuracy.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Page Range / eLocation ID:
411 to 417
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Building an annotated damage image database is the first step to support AI-assisted hurricane impact analysis. Up to now, annotated datasets for model training are insufficient at a local level despite abundant raw data that have been collected for decades. This paper provides a systematic approach for establishing an annotated hurricane-damaged building image database to support AI-assisted damage assessment and analysis. Optimal rectilinear images were generated from panoramic images collected from Hurricane Harvey, Texas 2017. Then, deep learning models, including Amazon Web Service (AWS) Rekognition and Mask R-CNN (Region Based Convolutional Neural Networks), were retrained on the data to develop a pipeline for building detection and structural component extraction. A web-based dashboard was developed for building data management and processed image visualization along with detected structural components and their damage ratings. The proposed AI-assisted labeling tool and trained models can intelligently and rapidly assist potential users such as hazard researchers, practitioners, and government agencies on natural disaster damage management. 
    more » « less
  2. This paper presents a few comprehensive experimental studies for automated Structural Damage Detection (SDD) in extreme events using deep learning methods for processing 2D images. In the first study, a 152-layer Residual network (ResNet) is utilized to classify multiple classes in eight SDD tasks, which include identification of scene levels, damage levels, and material types. The proposed ResNet achieved high accuracy for each task while the positions of the damage are not identifiable. In the second study, the existing ResNet and a segmentation network (U-Net) are combined into a new pipeline, cascaded networks, for categorizing and locating structural damage. The results show that the accuracy of damage detection is significantly improved compared to only using a segmentation network. In the third and fourth studies, end-to-end networks are developed and tested as a new solution to directly detect cracks and spalling in the image collections of recent large earthquakes. One of the proposed networks can achieve an accuracy above 67 .6% for all tested images at various scales and resolutions, and shows its robustness for these human-free detection tasks. As a preliminary field study, we applied the proposed method to detect damage in a concrete structure that was tested to study its progressive collapse performance. The experiments indicate that these solutions for automatic detection of structural damage using deep learning methods are feasible and promising. The training datasets and codes will be made available for the public upon the publication of this paper.

    more » « less
  3. Cracks of civil infrastructures, including bridges, dams, roads, and skyscrapers, potentially reduce local stiffness and cause material discontinuities, so as to lose their designed functions and threaten public safety. This inevitable process signifier urgent maintenance issues. Early detection can take preventive measures to prevent damage and possible failure. With the increasing size of image data, machine/deep learning based method have become an important branch in detecting cracks from images. This study is to build an automatic crack detector using the state-of-the-art technique referred to as Mask Regional Convolution Neural Network (R-CNN), which is kind of deep learning. Mask R-CNN technique is a recently proposed algorithm not only for object detection and object localization but also for object instance segmentation of natural images. It is found that the built crack detector is able to perform highly effective and efficient automatic segmentation of a wide range of images of cracks. In addition, this proposed automatic detector could work on videos as well; indicating that this detector based on Mask R-CNN provides a robust and feasible ability on detecting cracks exist and their shapes in real time on-site. 
    more » « less
  4. Damage diagnosis has been a challenging inverse problem in structural health monitoring. The main difficulty is characterizing the unknown relation between the measurements and damage patterns (i.e., damage indicator selection). Such damage indicators would ideally be able to identify the existence, location, and severity of damage. Therefore, this procedure requires complex data processing algorithms and dense sensor arrays, which brings computational intensity with it. To address this limitation, this paper introduces convolutional neural network (CNN), which is one of the major breakthroughs in image recognition, to the damage detection and localization problem. The CNN technique has the ability to discover abstract features and complex classifier boundaries that are able to distinguish various attributes of the problem. In this paper, a CNN topology was designed to classify simulated damaged and healthy cases and localize the damage when it exists. The performance of the proposed technique was evaluated through the finite-element simulations of undamaged and damaged structural connections. Samples were trained by using strain distributions as a consequence of various loads with several different crack scenarios. Completely new damage setups were introduced to the model during the testing process. Based on the findings of the proposed study, the damage diagnosis and localization were achieved with high accuracy, robustness, and computational efficiency. 
    more » « less
  5. Robust Mask R-CNN (Mask Regional Convolutional Neural Network) methods are proposed and tested for automatic detection of cracks on structures or their components that may be damaged during extreme events, such as earthquakes. We curated a new dataset with 2,021 labeled images for training and validation and aimed to find end-to-end deep neural networks for crack detection in the field. With data augmentation and parameters fine-tuning, Path Aggregation Network (PANet) with spatial attention mechanisms and High- resolution Network (HRNet) are introduced into Mask R-CNNs. The tests on three public datasets with low- or high-resolution images demonstrate that the proposed methods can achieve a big improvement over alternative networks, so the proposed method may be sufficient for crack detection for a variety of scales in real applications. 
    more » « less