skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Convolutional Neural Network Approach for Robust Structural Damage Detection and Localization
Damage diagnosis has been a challenging inverse problem in structural health monitoring. The main difficulty is characterizing the unknown relation between the measurements and damage patterns (i.e., damage indicator selection). Such damage indicators would ideally be able to identify the existence, location, and severity of damage. Therefore, this procedure requires complex data processing algorithms and dense sensor arrays, which brings computational intensity with it. To address this limitation, this paper introduces convolutional neural network (CNN), which is one of the major breakthroughs in image recognition, to the damage detection and localization problem. The CNN technique has the ability to discover abstract features and complex classifier boundaries that are able to distinguish various attributes of the problem. In this paper, a CNN topology was designed to classify simulated damaged and healthy cases and localize the damage when it exists. The performance of the proposed technique was evaluated through the finite-element simulations of undamaged and damaged structural connections. Samples were trained by using strain distributions as a consequence of various loads with several different crack scenarios. Completely new damage setups were introduced to the model during the testing process. Based on the findings of the proposed study, the damage diagnosis and localization were achieved with high accuracy, robustness, and computational efficiency.  more » « less
Award ID(s):
1618717
PAR ID:
10110702
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of computing in civil engineering
Volume:
33
Issue:
3
ISSN:
1943-5487
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. In this paper, two different convolutional neural networks (CNNs) are applied on images for automated structural damage detection (SDD) in earthquake damaged structures and cracking localization (e.g., detection of cracks, their widths and distributions) at various scales, such as pixel level, object level, and structural level. The proposed method has two main steps: 1) diagnosis, and 2) localization of cracking or other damage. At first a residual CNN with transfer learning is employed to classify the damage in the structures and structural components. This step performs damage detection using two public datasets. The second step uses another CNN with U-Net structure to locate the cracking on low resolution images. The implementations using public and self-collected datasets show promising performance for a problem that had remained a challenge in the structure engineering field for a long time and indicate that the proposed approach can perform detection and localization of structural damage with an acceptable accuracy. 
    more » « less
  2. Large quantities of data which contain detailed condition information over an extended period of time should be utilized to prioritize infrastructure repairs. As the temporal and spatial resolution of monitoring data drastically increase by advances in sensing technology, structural health monitoring applications reach the thresholds of big data. Deep neural networks are ideally suited to use large representative training datasets to learn complex damage features. In the previous study of authors, a real-time deep learning platform was developed to solve damage detection and localization challenge. The network was trained by using simulated structural connection mimicking the real test object with a variety of loading cases, damage scenarios, and measurement noise levels for successful and robust diagnosis of damage. In this study, the proposed damage diagnosis platform is validated by using temporally and spatially dense data collected by Digital Image Correlation (DIC) from the specimen. Laboratory testing of the specimen with induced damage condition is performed to evaluate the performance and efficiency of damage detection and localization approach. 
    more » « less
  3. Traditional structural damage detection methods in aerospace applications face challenges in accuracy and sensitivity, often necessitating multiple sensors to evaluate various measurement paths between the reference and defective states. However, the recently developed topological acoustic (TA) sensing technique can capture shifts in the geometric phase of an acoustic field, enabling the detection of even minor perturbations in the supporting medium. In this study, a diagnostic imaging method for damage detection in plate structures based on the TA sensing technique is presented. The method extracts the geometric phase shift index (GPS-I) from the Lamb wave response signals to indicate the location of the damage. Using Abaqus/CAE, a finite element model of the plate was established to simulate the Lamb wave response signals, which were then used to validate the feasibility of the proposed method. The results indicate that this technique enables rapid and precise identification of damage and its location within the plate structure, requiring response signals from only a few points on the damaged plate, and it is reference-free. 
    more » « less
  4. Building an annotated damage image database is the first step to support AI-assisted hurricane impact analysis. Up to now, annotated datasets for model training are insufficient at a local level despite abundant raw data that have been collected for decades. This paper provides a systematic approach for establishing an annotated hurricane-damaged building image database to support AI-assisted damage assessment and analysis. Optimal rectilinear images were generated from panoramic images collected from Hurricane Harvey, Texas 2017. Then, deep learning models, including Amazon Web Service (AWS) Rekognition and Mask R-CNN (Region Based Convolutional Neural Networks), were retrained on the data to develop a pipeline for building detection and structural component extraction. A web-based dashboard was developed for building data management and processed image visualization along with detected structural components and their damage ratings. The proposed AI-assisted labeling tool and trained models can intelligently and rapidly assist potential users such as hazard researchers, practitioners, and government agencies on natural disaster damage management. 
    more » « less
  5. Cracks of civil infrastructures, including bridges, dams, roads, and skyscrapers, potentially reduce local stiffness and cause material discontinuities, so as to lose their designed functions and threaten public safety. This inevitable process signifier urgent maintenance issues. Early detection can take preventive measures to prevent damage and possible failure. With the increasing size of image data, machine/deep learning based method have become an important branch in detecting cracks from images. This study is to build an automatic crack detector using the state-of-the-art technique referred to as Mask Regional Convolution Neural Network (R-CNN), which is kind of deep learning. Mask R-CNN technique is a recently proposed algorithm not only for object detection and object localization but also for object instance segmentation of natural images. It is found that the built crack detector is able to perform highly effective and efficient automatic segmentation of a wide range of images of cracks. In addition, this proposed automatic detector could work on videos as well; indicating that this detector based on Mask R-CNN provides a robust and feasible ability on detecting cracks exist and their shapes in real time on-site. 
    more » « less