skip to main content


Title: Building an Annotated Damage Image Database to Support AI-Assisted Hurricane Impact Analysis
Building an annotated damage image database is the first step to support AI-assisted hurricane impact analysis. Up to now, annotated datasets for model training are insufficient at a local level despite abundant raw data that have been collected for decades. This paper provides a systematic approach for establishing an annotated hurricane-damaged building image database to support AI-assisted damage assessment and analysis. Optimal rectilinear images were generated from panoramic images collected from Hurricane Harvey, Texas 2017. Then, deep learning models, including Amazon Web Service (AWS) Rekognition and Mask R-CNN (Region Based Convolutional Neural Networks), were retrained on the data to develop a pipeline for building detection and structural component extraction. A web-based dashboard was developed for building data management and processed image visualization along with detected structural components and their damage ratings. The proposed AI-assisted labeling tool and trained models can intelligently and rapidly assist potential users such as hazard researchers, practitioners, and government agencies on natural disaster damage management.  more » « less
Award ID(s):
1827505 1737533
NSF-PAR ID:
10346690
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2021 IEEE International Conference on Imaging Systems and Techniques (IST)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Obeid, I. (Ed.)
    The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do not have access to such data resources must rely on techniques in which existing models can be adapted to new datasets [6]. A preliminary version of this breast corpus release was tested in a pilot study using a baseline machine learning system, ResNet18 [7], that leverages several open-source Python tools. The pilot corpus was divided into three sets: train, development, and evaluation. Portions of these slides were manually annotated [1] using the nine labels in Table 1 [8] to identify five to ten examples of pathological features on each slide. Not every pathological feature is annotated, meaning excluded areas can include focuses particular to these labels that are not used for training. A summary of the number of patches within each label is given in Table 2. To maintain a balanced training set, 1,000 patches of each label were used to train the machine learning model. Throughout all sets, only annotated patches were involved in model development. The performance of this model in identifying all the patches in the evaluation set can be seen in the confusion matrix of classification accuracy in Table 3. The highest performing labels were background, 97% correct identification, and artifact, 76% correct identification. A correlation exists between labels with more than 6,000 development patches and accurate performance on the evaluation set. Additionally, these results indicated a need to further refine the annotation of invasive ductal carcinoma (“indc”), inflammation (“infl”), nonneoplastic features (“nneo”), normal (“norm”) and suspicious (“susp”). This pilot experiment motivated changes to the corpus that will be discussed in detail in this poster presentation. To increase the accuracy of the machine learning model, we modified how we addressed underperforming labels. One common source of error arose with how non-background labels were converted into patches. Large areas of background within other labels were isolated within a patch resulting in connective tissue misrepresenting a non-background label. In response, the annotation overlay margins were revised to exclude benign connective tissue in non-background labels. Corresponding patient reports and supporting immunohistochemical stains further guided annotation reviews. The microscopic diagnoses given by the primary pathologist in these reports detail the pathological findings within each tissue site, but not within each specific slide. The microscopic diagnoses informed revisions specifically targeting annotated regions classified as cancerous, ensuring that the labels “indc” and “dcis” were used only in situations where a micropathologist diagnosed it as such. Further differentiation of cancerous and precancerous labels, as well as the location of their focus on a slide, could be accomplished with supplemental immunohistochemically (IHC) stained slides. When distinguishing whether a focus is a nonneoplastic feature versus a cancerous growth, pathologists employ antigen targeting stains to the tissue in question to confirm the diagnosis. For example, a nonneoplastic feature of usual ductal hyperplasia will display diffuse staining for cytokeratin 5 (CK5) and no diffuse staining for estrogen receptor (ER), while a cancerous growth of ductal carcinoma in situ will have negative or focally positive staining for CK5 and diffuse staining for ER [9]. Many tissue samples contain cancerous and non-cancerous features with morphological overlaps that cause variability between annotators. The informative fields IHC slides provide could play an integral role in machine model pathology diagnostics. Following the revisions made on all the annotations, a second experiment was run using ResNet18. Compared to the pilot study, an increase of model prediction accuracy was seen for the labels indc, infl, nneo, norm, and null. This increase is correlated with an increase in annotated area and annotation accuracy. Model performance in identifying the suspicious label decreased by 25% due to the decrease of 57% in the total annotated area described by this label. A summary of the model performance is given in Table 4, which shows the new prediction accuracy and the absolute change in error rate compared to Table 3. The breast tissue subset we are developing includes 3,505 annotated breast pathology slides from 296 patients. The average size of a scanned SVS file is 363 MB. The annotations are stored in an XML format. A CSV version of the annotation file is also available which provides a flat, or simple, annotation that is easy for machine learning researchers to access and interface to their systems. Each patient is identified by an anonymized medical reference number. Within each patient’s directory, one or more sessions are identified, also anonymized to the first of the month in which the sample was taken. These sessions are broken into groupings of tissue taken on that date (in this case, breast tissue). A deidentified patient report stored as a flat text file is also available. Within these slides there are a total of 16,971 total annotated regions with an average of 4.84 annotations per slide. Among those annotations, 8,035 are non-cancerous (normal, background, null, and artifact,) 6,222 are carcinogenic signs (inflammation, nonneoplastic and suspicious,) and 2,714 are cancerous labels (ductal carcinoma in situ and invasive ductal carcinoma in situ.) The individual patients are split up into three sets: train, development, and evaluation. Of the 74 cancerous patients, 20 were allotted for both the development and evaluation sets, while the remain 34 were allotted for train. The remaining 222 patients were split up to preserve the overall distribution of labels within the corpus. This was done in hope of creating control sets for comparable studies. Overall, the development and evaluation sets each have 80 patients, while the training set has 136 patients. In a related component of this project, slides from the Fox Chase Cancer Center (FCCC) Biosample Repository (https://www.foxchase.org/research/facilities/genetic-research-facilities/biosample-repository -facility) are being digitized in addition to slides provided by Temple University Hospital. This data includes 18 different types of tissue including approximately 38.5% urinary tissue and 16.5% gynecological tissue. These slides and the metadata provided with them are already anonymized and include diagnoses in a spreadsheet with sample and patient ID. We plan to release over 13,000 unannotated slides from the FCCC Corpus simultaneously with v1.0.0 of TUDP. Details of this release will also be discussed in this poster. Few digitally annotated databases of pathology samples like TUDP exist due to the extensive data collection and processing required. The breast corpus subset should be released by November 2021. By December 2021 we should also release the unannotated FCCC data. We are currently annotating urinary tract data as well. We expect to release about 5,600 processed TUH slides in this subset. We have an additional 53,000 unprocessed TUH slides digitized. Corpora of this size will stimulate the development of a new generation of deep learning technology. In clinical settings where resources are limited, an assistive diagnoses model could support pathologists’ workload and even help prioritize suspected cancerous cases. ACKNOWLEDGMENTS This material is supported by the National Science Foundation under grants nos. CNS-1726188 and 1925494. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. REFERENCES [1] N. Shawki et al., “The Temple University Digital Pathology Corpus,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York City, New York, USA: Springer, 2020, pp. 67 104. https://www.springer.com/gp/book/9783030368432. [2] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning.” Major Research Instrumentation (MRI), Division of Computer and Network Systems, Award No. 1726188, January 1, 2018 – December 31, 2021. https://www. isip.piconepress.com/projects/nsf_dpath/. [3] A. Gulati et al., “Conformer: Convolution-augmented Transformer for Speech Recognition,” in Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH), 2020, pp. 5036-5040. https://doi.org/10.21437/interspeech.2020-3015. [4] C.-J. Wu et al., “Machine Learning at Facebook: Understanding Inference at the Edge,” in Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA), 2019, pp. 331–344. https://ieeexplore.ieee.org/document/8675201. [5] I. Caswell and B. Liang, “Recent Advances in Google Translate,” Google AI Blog: The latest from Google Research, 2020. [Online]. Available: https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html. [Accessed: 01-Aug-2021]. [6] V. Khalkhali, N. Shawki, V. Shah, M. Golmohammadi, I. Obeid, and J. Picone, “Low Latency Real-Time Seizure Detection Using Transfer Deep Learning,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2021, pp. 1 7. https://www.isip. piconepress.com/publications/conference_proceedings/2021/ieee_spmb/eeg_transfer_learning/. [7] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning,” Philadelphia, Pennsylvania, USA, 2020. https://www.isip.piconepress.com/publications/reports/2020/nsf/mri_dpath/. [8] I. Hunt, S. Husain, J. Simons, I. Obeid, and J. Picone, “Recent Advances in the Temple University Digital Pathology Corpus,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2019, pp. 1–4. https://ieeexplore.ieee.org/document/9037859. [9] A. P. Martinez, C. Cohen, K. Z. Hanley, and X. (Bill) Li, “Estrogen Receptor and Cytokeratin 5 Are Reliable Markers to Separate Usual Ductal Hyperplasia From Atypical Ductal Hyperplasia and Low-Grade Ductal Carcinoma In Situ,” Arch. Pathol. Lab. Med., vol. 140, no. 7, pp. 686–689, Apr. 2016. https://doi.org/10.5858/arpa.2015-0238-OA. 
    more » « less
  2. Abstract

    After a disaster, teams of structural engineers collect vast amounts of images from damaged buildings to obtain new knowledge and extract lessons from the event. However, in many cases, the images collected are captured without sufficient spatial context. When damage is severe, it may be quite difficult to even recognize the building. Accessing images of the predisaster condition of those buildings is required to accurately identify the cause of the failure or the actual loss in the building. Here, to address this issue, we develop a method to automatically extract pre‐event building images from 360° panorama images (panoramas). By providing a geotagged image collected near the target building as the input, panoramas close to the input image location are automatically downloaded through street view services (e.g., Google or Bing in the United States). By computing the geometric relationship between the panoramas and the target building, the most suitable projection direction for each panorama is identified to generate high‐quality 2D images of the building. Region‐based convolutional neural networks are exploited to recognize the building within those 2D images. Several panoramas are used so that the detected building images provide various viewpoints of the building. To demonstrate the capability of the technique, we consider residential buildings in Holiday Beach in Rockport, Texas, United States, that experienced significant devastation in Hurricane Harvey in 2017. Using geotagged images gathered during actual postdisaster building reconnaissance missions, we verify the method by successfully extracting residential building images from Google Street View images, which were captured before the event.

     
    more » « less
  3. Abstract

    In high seismic risk regions, it is important for city managers and decision makers to create programs to mitigate the risk for buildings. For large cities and regions, a mitigation program relies on accurate information of building stocks, that is, a database of all buildings in the area and their potential structural defects, making them vulnerable to strong ground shaking. Structural defects and vulnerabilities could manifest via the building's appearance. One such example is the soft‐story building—its vertical irregularity is often observable from the facade. This structural type can lead to severe damage or even collapse during moderate or severe earthquakes. Therefore, it is critical to screen large building stock to find these buildings and retrofit them. However, it is usually time‐consuming to screen soft‐story structures by conventional methods. To tackle this issue, we used full image classification to screen them out from street view images in our previous study. However, full image classification has difficulties locating buildings in an image, which leads to unreliable predictions. In this paper, we developed an automated pipeline in which we segment street view images to identify soft‐story buildings. However, annotated data for this purpose is scarce. To tackle this issue, we compiled a dataset of street view images and present a strategy for annotating these images in a semi‐automatic way. The annotated dataset is then used to train an instance segmentation model that can be used to detect all soft‐story buildings from unseen images.

     
    more » « less
  4. Abstract Background Diabetic retinopathy (DR) is a leading cause of blindness in American adults. If detected, DR can be treated to prevent further damage causing blindness. There is an increasing interest in developing artificial intelligence (AI) technologies to help detect DR using electronic health records. The lesion-related information documented in fundus image reports is a valuable resource that could help diagnoses of DR in clinical decision support systems. However, most studies for AI-based DR diagnoses are mainly based on medical images; there is limited studies to explore the lesion-related information captured in the free text image reports. Methods In this study, we examined two state-of-the-art transformer-based natural language processing (NLP) models, including BERT and RoBERTa, compared them with a recurrent neural network implemented using Long short-term memory (LSTM) to extract DR-related concepts from clinical narratives. We identified four different categories of DR-related clinical concepts including lesions, eye parts, laterality, and severity, developed annotation guidelines, annotated a DR-corpus of 536 image reports, and developed transformer-based NLP models for clinical concept extraction and relation extraction. We also examined the relation extraction under two settings including ‘gold-standard’ setting—where gold-standard concepts were used–and end-to-end setting. Results For concept extraction, the BERT model pretrained with the MIMIC III dataset achieve the best performance (0.9503 and 0.9645 for strict/lenient evaluation). For relation extraction, BERT model pretrained using general English text achieved the best strict/lenient F1-score of 0.9316. The end-to-end system, BERT_general_e2e, achieved the best strict/lenient F1-score of 0.8578 and 0.8881, respectively. Another end-to-end system based on the RoBERTa architecture, RoBERTa_general_e2e, also achieved the same performance as BERT_general_e2e in strict scores. Conclusions This study demonstrated the efficiency of transformer-based NLP models for clinical concept extraction and relation extraction. Our results show that it’s necessary to pretrain transformer models using clinical text to optimize the performance for clinical concept extraction. Whereas, for relation extraction, transformers pretrained using general English text perform better. 
    more » « less
  5. Large systematic revisionary projects incorporating data for hundreds or thousands of taxa require an integrative approach, with a strong biodiversity-informatics core for efficient data management to facilitate research on the group. Our original biodiversity informatics platform, 3i (Internet-accessible Interactive Identification) combined a customized MS Access database backend with ASP-based web interfaces to support revisionary syntheses of several large genera of leafhopers (Hemiptera: Auchenorrhyncha: Cicadellidae). More recently, for our National Science Foundation sponsored project, “GoLife: Collaborative Research: Integrative genealogy, ecology and phenomics of deltocephaline leafhoppers (Hemiptera: Cicadellidae), and their microbial associates”, we selected the new open-source platform TaxonWorks as the cyberinfrastructure. In the scope of the project, the original “3i World Auchenorrhyncha Database” was imported into TaxonWorks. At the present time, TaxonWorks has many tools to automatically import nomenclature, citations, and specimen based collection data. At the time of the initial migration of the 3i database, many of those tools were still under development, and complexity of the data in the database required a custom migration script, which is still probably the most efficient solution for importing datasets with long development history. At the moment, the World Auchenorrhyncha Database comprehensively covers nomenclature of the group and includes data on 70 valid families, 6,816 valid genera, 47,064 valid species as well as synonymy and subsequent combinations (Fig. 1). In addition, many taxon records include the original citation, bibliography, type information, etymology, etc. The bibliography of the group includes 37,579 sources, about 1/3 of which are associated with PDF files. Species have distribution records, either derived from individual specimens or as country and state level asserted distribution, as well as biological associations indicating host plants, predators, and parasitoids. Observation matrices in TaxonWorks are designed to handle morphological data associated with taxa or specimens. The matrices may be used to automatically generate interactive identification keys and taxon descriptions. They can also be downloaded to be imported, for example, into Lucid builder, or to perform phylogenetic analysis using an external application. At the moment there are 36 matrices associated with the project. The observation matrix from GoLife project covers 798 taxa by 210 descriptors (most of which are qualitative multi-state morphological descriptors) (Fig. 2). Illustrations are provided for 9,886 taxa and organized in the specialized image matrix and could be used as a pictorial key for determination of species and taxa of a higher rank. For the phylogenetic analysis, a dataset was constructed for 730 terminal taxa and >160,000 nucleotide positions obtained using anchored hybrid enrichment of genomic DNA for a sample of leafhoppers from the subfamily Deltocephalinae and outgroups. The probe kit targets leafhopper genes, as well as some bacterial genes (endosymbionts and plant pathogens transmitted by leafhoppers). The maximum likelihood analyses of concatenated nucleotide and amino acid sequences as well as coalescent gene tree analysis yielded well-resolved phylogenetic trees (Cao et al. 2022). Raw sequence data have been uploaded to the Sequence Read Archive on GenBank. Occurrence and morphological data, as well as diagnostic images, for voucher specimens have been incorporated into TaxonWorks. Data in TaxonWorks could be exported in raw format, get accessed via Application Programming Interface (API), or be shared with external data aggregators like Catalogue of Life, GBIF, iDigBio. 
    more » « less