skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Glacier geometry and flow speed determine how Arctic marine-terminating glaciers respond to lubricated beds
Abstract. Basal conditions directly control the glacier sliding rate and the dynamic discharge of ice. Recent glacier destabilization events indicate that some marine-terminating glaciers quickly respond to lubricated beds with increased flow speed, but the underlying physics, especially how this vulnerability relates to glacier geometry and flow characteristics, remains unclear. This paper presents a 1D physical framework for glacier dynamic vulnerability assuming sudden basal lubrication as an initial perturbation. In this new model, two quantities determine the scale and the areal extent of the subsequent thinning and acceleration after the bed is lubricated: Péclet number (Pe) and the product of glacier speed and thickness gradient (dubbed J0 in this study). To validate the model, this paper calculates Pe and J0 using multi-sourced data from 1996 to 1998 for outlet glaciers in the Greenland ice sheet and Austfonna ice cap, Svalbard, and compares the results with the glacier speed change during 1996/1998–2018. Glaciers with lower Pe and J0 are more likely to accelerate during this 20-year span than those with higher Pe and J0, which matches the model prediction. A combined factor of ice thickness, surface slope, and initial flow speed physically determines how much and how fast glaciers respond to lubricated beds in terms of speed, elevation, and terminus change.  more » « less
Award ID(s):
1928406
PAR ID:
10352853
Author(s) / Creator(s):
Date Published:
Journal Name:
The Cryosphere
Volume:
16
Issue:
4
ISSN:
1994-0424
Page Range / eLocation ID:
1431 to 1445
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The discovery of Antarctica's deepest subglacial troughbeneath the Denman Glacier, combined with high rates of basal melt at thegrounding line, has caused significant concern over its vulnerability toretreat. Recent attention has therefore been focusing on understanding thecontrols driving Denman Glacier's dynamic evolution. Here we consider theShackleton system, comprised of the Shackleton Ice Shelf, Denman Glacier,and the adjacent Scott, Northcliff, Roscoe and Apfel glaciers, about whichalmost nothing is known. We widen the context of previously observed dynamicchanges in the Denman Glacier to the wider region of the Shackleton system,with a multi-decadal time frame and an improved biannual temporal frequencyof observations in the last 7 years (2015–2022). We integrate newsatellite observations of ice structure and airborne radar data with changesin ice front position and ice flow velocities to investigate changes in thesystem. Over the 60-year period of observation we find significant riftpropagation on the Shackleton Ice Shelf and Scott Glacier and notablestructural changes in the floating shear margins between the ice shelf andthe outlet glaciers, as well as features indicative of ice with elevatedsalt concentration and brine infiltration in regions of the system. Over theperiod 2017–2022 we observe a significant increase in ice flow speed (up to50 %) on the floating part of Scott Glacier, coincident with small-scalecalving and rift propagation close to the ice front. We do not observe anyseasonal variation or significant change in ice flow speed across the restof the Shackleton system. Given the potential vulnerability of the system toaccelerating retreat into the overdeepened, potentially sediment-filledbedrock trough, an improved understanding of the glaciological,oceanographic and geological conditions in the Shackleton system arerequired to improve the certainty of numerical model predictions, and weidentify a number of priorities for future research. With access to theseremote coastal regions a major challenge, coordinated internationallycollaborative efforts are required to quantify how much the Shackletonregion is likely to contribute to sea level rise in the coming centuries. 
    more » « less
  2. Abstract Globally, glaciers are shrinking in response to climate change, with implications for global sea level rise as well as downstream ecosystems and water resources. Sliding at the ice‐bed interface (basal motion) provides a mechanism for glaciers to respond rapidly to climate change. While the short‐term dynamics of glacier basal motion (<10 years) have received substantial attention, little is known about how basal motion and its sensitivity to subglacial hydrology changes over long (>50 year) timescales—this knowledge is required for accurate prediction of future glacier change. We compare historical data with modern estimates from field and satellite data at Athabasca Glacier and show that the glacier thinned by 60 m (−21%) over 1961–2020. However, a concurrent increase in surface slope results in minimal change in the average driving stress (−6 kPa and −4%). These geometric changes coincide with relatively uniform slowing (−15 m a−1and −45%). Simplified ice modeling suggests that declining basal motion accounts for most of this slow down (91% on average and 46% at minimum). A decline in basal motion can be explained by increasing basal friction resulting from geometric change in addition to increasing meltwater flux through a more efficient subglacial hydrologic system. These results highlight the need to include time‐varying dynamics of basal motion in glacier models and analyses. If these findings are generalizable, they suggest that declining basal motion reduces the flux of ice to lower elevations, helping to mitigate glacier mass loss in a warming climate. 
    more » « less
  3. Globally, glaciers are shrinking in response to climate change, with implications for global sea level rise as well as downstream ecosystems and water resources. Sliding at the ice-bed interface (basal motion) provides a mechanism for glaciers to respond rapidly to climate change. While the short-term dynamics of glacier basal motion (&amp;amp;amp;amp;lt; 10 years) have received substantial attention, little is known about how basal motion and its sensitivity to subglacial hydrology changes over long (&amp;amp;amp;amp;gt; 50 year) timescales – this knowledge is required for accurate prediction of future glacier change. We compare historical data with modern estimates from field-collected and remotely-sensed data at Athabasca Glacier and show that, between 1961 and 2019, the glacier thinned by 51 meter ( - 18 %). However, a concurrent increase in surface slope results in minimal change in the average driving stress (-10 kilopascal, - 7%). These geometric changes coincide with a uniform surface slow down of surface velocity (-15 meter a-1, -45%). Historical observations and simplified ice modeling suggest that declining basal motion accounts for most of this slow down (63 % at a minimum). A decline in basal motion can be explained by increasing basal friction resulting from geometric change in addition to increasing meltwater flux through an efficient subglacial hydrologic system. There is some evidence that changes in basal motion in the overdeepened reach are responsible for slowing basal motion several km up-glacier. These results highlight the need to include time-varying dynamics of basal motion in glacier models and analyses. These findings suggest declining basal motion may reduce the flux of ice to lower elevations, helping to mitigate glacier mass loss in a warming climate. 
    more » « less
  4. Abstract The Bering‐Bagley Glacier System (BBGS), Alaska, Earth's largest temperate surging glacier, surged in 2008–2013. We use numerical modeling and satellite observations to investigate how surging in a large and complex glacier system differs from surging in smaller glaciers for which our current understanding of the surge phenomenon is based. With numerical simulations of a long quiescent phase and a short surge phase in the BBGS, we show that surging is more spatiotemporally complex in larger glaciers with multiple reservoir areas forming during quiescence which interact in a cascading manner when ice accelerates during the surge phase. For each phase, we analyze the simulated elevation‐change and ice‐velocity pattern, infer information on the evolving basal drainage system through hydropotential analysis, and supplement these findings with observational data such as CryoSat‐2 digital elevation maps. During the quiescent simulation, water drainage paths become increasingly lateral and hydropotential wells form indicating an expanding storage capacity of subglacial water. These results are attributed to local bedrock topography characterized by large subglacial ridges that dam the down‐glacier flow of ice and water. In the surge simulation, we model surge evolution through Bering Glacier's trunk by imposing a basal friction representation that mimics a propagating surge wave. As the surge progresses, drainage efficiency further degrades in the active surging‐zone from its already inefficient, end‐of‐quiescence state. Results from this study improve our knowledge of surging in large and complex systems which generalizes to glacial accelerations observed in outlet glaciers of Greenland, thus reducing uncertainty in modeling sea‐level rise. 
    more » « less
  5. Abstract Glaciers and ice streams flowing over sediment beds commonly have a layer of ice‐rich debris adhered to their base, known as a “frozen fringe,” but its impact on basal friction is unknown. We simulated basal slip over granular beds with a cryogenic ring shear device while ice infiltrated the bed to grow a fringe, and measured the frictional response under different effective stresses and slip speeds. Frictional resistance increased with increasing slip speed until it plateaued at the frictional strength of the till, closely resembling the regularized Coulomb slip law associated with clean ice over deformable beds. We hypothesize that this arises from deformation in a previously unidentified zone of weakly frozen sediments at the fringe's base, which is highly sensitive to temperature and stress gradients. We show how a rheologic model for ice‐rich debris coupled with the thermomechanics of fringe growth can account for the regularized Coulomb behavior. 
    more » « less