skip to main content


Title: Fairness in Ranking, Part I: Score-based Ranking
In the past few years, there has been much work on incorporating fairness requirements into algorithmic rankers, with contributions coming from the data management, algorithms, information retrieval, and recommender systems communities. In this survey we give a systematic overview of this work, offering a broad perspective that connects formalizations and algorithmic approaches across subfields. An important contribution of our work is in developing a common narrative around the value frameworks that motivate specific fairness-enhancing interventions in ranking. This allows us to unify the presentation of mitigation objectives and of algorithmic techniques to help meet those objectives or identify trade-offs. In this first part of this survey, we describe four classification frameworks for fairness-enhancing interventions, along which we relate the technical methods surveyed in this paper, discuss evaluation datasets, and present technical work on fairness in score-based ranking. In the second part of this survey, we present methods that incorporate fairness in supervised learning, and also give representative examples of recent work on fairness in recommendation and matchmaking systems. We also discuss evaluation frameworks for fair score-based ranking and fair learning-to-rank, and draw a set of recommendations for the evaluation of fair ranking methods.  more » « less
Award ID(s):
1934464 1916505 1922658
NSF-PAR ID:
10352863
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Computing Surveys
ISSN:
0360-0300
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the past few years, there has been much work on incorporating fairness requirements into algorithmic rankers, with contributions coming from the data management, algorithms, information retrieval, and recommender systems communities. In this survey we give a systematic overview of this work, offering a broad perspective that connects formalizations and algorithmic approaches across subfields. An important contribution of our work is in developing a common narrative around the value frameworks that motivate specific fairness-enhancing interventions in ranking. This allows us to unify the presentation of mitigation objectives and of algorithmic techniques to help meet those objectives or identify trade-offs. In the first part of this survey, we describe four classification frameworks for fairness-enhancing interventions, along which we relate the technical methods surveyed in this paper, discuss evaluation datasets, and present technical work on fairness in score-based ranking. In this second part of this survey, we present methods that incorporate fairness in supervised learning, and also give representative examples of recent work on fairness in recommendation and matchmaking systems. We also discuss evaluation frameworks for fair score-based ranking and fair learning-to-rank, and draw a set of recommendations for the evaluation of fair ranking methods. 
    more » « less
  2. In the past few years, there has been much work on incorporating fairness requirements into the design of algorithmic rankers, with contributions from the data management, algorithms, information retrieval, and recommender systems communities. In this tutorial, we give a systematic overview of this work, offering a broad perspective that connects formalizations and algorithmic approaches across subfields. During the first part of the tutorial, we present a classification framework for fairness-enhancing interventions, along which we will then relate the technical methods. This framework allows us to unify the presentation of mitigation objectives and of algorithmic techniques to help meet those objectives or identify trade-offs. Next, we discuss fairness in score-based ranking and in supervised learning-to-rank. We conclude with recommendations for practitioners, to help them select a fair ranking method based on the requirements of their specific application domain. 
    more » « less
  3. For applications where multiple stakeholders provide recommendations, a fair consensus ranking must not only ensure that the preferences of rankers are well represented, but must also mitigate disadvantages among socio-demographic groups in the final result. However, there is little empirical guidance on the value or challenges of visualizing and integrating fairness metrics and algorithms into human-in-the-loop systems to aid decision-makers. In this work, we design a study to analyze the effectiveness of integrating such fairness metrics-based visualization and algorithms. We explore this through a task-based crowdsourced experiment comparing an interactive visualization system for constructing consensus rankings, ConsensusFuse, with a similar system that includes visual encodings of fairness metrics and fair-rank generation algorithms, FairFuse. We analyze the measure of fairness, agreement of rankers’ decisions, and user interactions in constructing the fair consensus ranking across these two systems. In our study with 200 participants, results suggest that providing these fairness-oriented support features nudges users to align their decision with the fairness metrics while minimizing the tedious process of manually having to amend the consensus ranking. We discuss the implications of these results for the design of next-generation fairness oriented-systems and along with emerging directions for future research. 
    more » « less
  4. Fair consensus building combines the preferences of multiple rankers into a single consensus ranking, while ensuring any group defined by a protected attribute (such as race or gender) is not disadvantaged compared to other groups. Manually generating a fair consensus ranking is time-consuming and impractical- even for a fairly small number of candidates. While algorithmic approaches for auditing and generating fair consensus rankings have been developed, these have not been operationalized in interactive systems. To bridge this gap, we introduce FairFuse, a visualization system for generating, analyzing, and auditing fair consensus rankings. We construct a data model which includes base rankings entered by rankers, augmented with measures of group fairness, and algorithms for generating consensus rankings with varying degrees of fairness. We design novel visualizations that encode these measures in a parallel-coordinates style rank visualization, with interactions for generating and exploring fair consensus rankings. We describe use cases in which FairFuse supports a decision-maker in ranking scenarios in which fairness is important, and discuss emerging challenges for future efforts supporting fairness-oriented rank analysis. Code and demo videos available at https://osf.io/hd639/. 
    more » « less
  5. null (Ed.)
    Recent work in fair machine learning has proposed dozens of technical definitions of algorithmic fairness and methods for enforcing these definitions. However, we still lack an understanding of how to develop machine learning systems with fairness criteria that reflect relevant stakeholders’ nuanced viewpoints in real-world contexts. To address this gap, we propose a framework for eliciting stakeholders’ subjective fairness notions. Combining a user interface that allows stakeholders to examine the data and the algorithm’s predictions with an interview protocol to probe stakeholders’ thoughts while they are interacting with the interface, we can identify stakeholders’ fairness beliefs and principles. We conduct a user study to evaluate our framework in the setting of a child maltreatment predictive system. Our evaluations show that the framework allows stakeholders to comprehensively convey their fairness viewpoints. We also discuss how our results can inform the design of predictive systems. 
    more » « less