skip to main content


Title: Fairness in Ranking, Part II: Learning-to-Rank and Recommender Systems
In the past few years, there has been much work on incorporating fairness requirements into algorithmic rankers, with contributions coming from the data management, algorithms, information retrieval, and recommender systems communities. In this survey we give a systematic overview of this work, offering a broad perspective that connects formalizations and algorithmic approaches across subfields. An important contribution of our work is in developing a common narrative around the value frameworks that motivate specific fairness-enhancing interventions in ranking. This allows us to unify the presentation of mitigation objectives and of algorithmic techniques to help meet those objectives or identify trade-offs. In the first part of this survey, we describe four classification frameworks for fairness-enhancing interventions, along which we relate the technical methods surveyed in this paper, discuss evaluation datasets, and present technical work on fairness in score-based ranking. In this second part of this survey, we present methods that incorporate fairness in supervised learning, and also give representative examples of recent work on fairness in recommendation and matchmaking systems. We also discuss evaluation frameworks for fair score-based ranking and fair learning-to-rank, and draw a set of recommendations for the evaluation of fair ranking methods.  more » « less
Award ID(s):
1934464 1922658 1916505
NSF-PAR ID:
10352864
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Computing Surveys
ISSN:
0360-0300
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the past few years, there has been much work on incorporating fairness requirements into algorithmic rankers, with contributions coming from the data management, algorithms, information retrieval, and recommender systems communities. In this survey we give a systematic overview of this work, offering a broad perspective that connects formalizations and algorithmic approaches across subfields. An important contribution of our work is in developing a common narrative around the value frameworks that motivate specific fairness-enhancing interventions in ranking. This allows us to unify the presentation of mitigation objectives and of algorithmic techniques to help meet those objectives or identify trade-offs. In this first part of this survey, we describe four classification frameworks for fairness-enhancing interventions, along which we relate the technical methods surveyed in this paper, discuss evaluation datasets, and present technical work on fairness in score-based ranking. In the second part of this survey, we present methods that incorporate fairness in supervised learning, and also give representative examples of recent work on fairness in recommendation and matchmaking systems. We also discuss evaluation frameworks for fair score-based ranking and fair learning-to-rank, and draw a set of recommendations for the evaluation of fair ranking methods. 
    more » « less
  2. In the past few years, there has been much work on incorporating fairness requirements into the design of algorithmic rankers, with contributions from the data management, algorithms, information retrieval, and recommender systems communities. In this tutorial, we give a systematic overview of this work, offering a broad perspective that connects formalizations and algorithmic approaches across subfields. During the first part of the tutorial, we present a classification framework for fairness-enhancing interventions, along which we will then relate the technical methods. This framework allows us to unify the presentation of mitigation objectives and of algorithmic techniques to help meet those objectives or identify trade-offs. Next, we discuss fairness in score-based ranking and in supervised learning-to-rank. We conclude with recommendations for practitioners, to help them select a fair ranking method based on the requirements of their specific application domain. 
    more » « less
  3. null (Ed.)
    Recent work in fair machine learning has proposed dozens of technical definitions of algorithmic fairness and methods for enforcing these definitions. However, we still lack an understanding of how to develop machine learning systems with fairness criteria that reflect relevant stakeholders’ nuanced viewpoints in real-world contexts. To address this gap, we propose a framework for eliciting stakeholders’ subjective fairness notions. Combining a user interface that allows stakeholders to examine the data and the algorithm’s predictions with an interview protocol to probe stakeholders’ thoughts while they are interacting with the interface, we can identify stakeholders’ fairness beliefs and principles. We conduct a user study to evaluate our framework in the setting of a child maltreatment predictive system. Our evaluations show that the framework allows stakeholders to comprehensively convey their fairness viewpoints. We also discuss how our results can inform the design of predictive systems. 
    more » « less
  4. As one of the most pervasive applications of machine learning, recommender systems are playing an important role on assisting human decision making. The satisfaction of users and the interests of platforms are closely related to the quality of the generated recommendation results. However, as a highly data-driven system, recommender system could be affected by data or algorithmic bias and thus generate unfair results, which could weaken the reliance of the systems. As a result, it is crucial to address the potential unfairness problems in recommendation settings. Recently, there has been growing attention on fairness considerations in recommender systems with more and more literature on approaches to promote fairness in recommendation. However, the studies are rather fragmented and lack a systematic organization, thus making it difficult to penetrate for new researchers to the domain. This motivates us to provide a systematic survey of existing works on fairness in recommendation. This survey focuses on the foundations for fairness in recommendation literature. It first presents a brief introduction about fairness in basic machine learning tasks such as classification and ranking in order to provide a general overview of fairness research, as well as introduce the more complex situations and challenges that need to be considered when studying fairness in recommender systems. After that, the survey will introduce fairness in recommendation with a focus on the taxonomies of current fairness definitions, the typical techniques for improving fairness, as well as the datasets for fairness studies in recommendation. The survey also talks about the challenges and opportunities in fairness research with the hope of promoting the fair recommendation research area and beyond. 
    more » « less
  5. Blum, A (Ed.)
    Algorithmic fairness, and in particular the fairness of scoring and classification algorithms, has become a topic of increasing social concern and has recently witnessed an explosion of research in theoretical computer science, machine learning, statistics, the social sciences, and law. Much of the literature considers the case of a single classifier (or scoring function) used once, in isolation. In this work, we initiate the study of the fairness properties of systems composed of algorithms that are fair in isolation; that is, we study fairness under composition. We identify pitfalls of naïve composition and give general constructions for fair composition, demonstrating both that classifiers that are fair in isolation do not necessarily compose into fair systems and also that seemingly unfair components may be carefully combined to construct fair systems. We focus primarily on the individual fairness setting proposed in [Dwork, Hardt, Pitassi, Reingold, Zemel, 2011], but also extend our results to a large class of group fairness definitions popular in the recent literature, exhibiting several cases in which group fairness definitions give misleading signals under composition. 
    more » « less