Abstract With the development of industrial automation and artificial intelligence, robotic systems are developing into an essential part of factory production, and the human-robot collaboration (HRC) becomes a new trend in the industrial field. In our previous work, ten dynamic gestures have been designed for communication between a human worker and a robot in manufacturing scenarios, and a dynamic gesture recognition model based on Convolutional Neural Networks (CNN) has been developed. Based on the model, this study aims to design and develop a new real-time HRC system based on multi-threading method and the CNN. This system enables the real-time interaction between a human worker and a robotic arm based on dynamic gestures. Firstly, a multi-threading architecture is constructed for high-speed operation and fast response while schedule more than one task at the same time. Next, A real-time dynamic gesture recognition algorithm is developed, where a human worker’s behavior and motion are continuously monitored and captured, and motion history images (MHIs) are generated in real-time. The generation of the MHIs and their identification using the classification model are synchronously accomplished. If a designated dynamic gesture is detected, it is immediately transmitted to the robotic arm to conduct a real-time response. A Graphic User Interface (GUI) for the integration of the proposed HRC system is developed for the visualization of the real-time motion history and classification results of the gesture identification. A series of actual collaboration experiments are carried out between a human worker and a six-degree-of-freedom (6 DOF) Comau industrial robot, and the experimental results show the feasibility and robustness of the proposed system.
more »
« less
Real-Time Multi-Modal Human–Robot Collaboration Using Gestures and Speech
Abstract As artificial intelligence and industrial automation are developing, human–robot collaboration (HRC) with advanced interaction capabilities has become an increasingly significant area of research. In this paper, we design and develop a real-time, multi-model HRC system using speech and gestures. A set of 16 dynamic gestures is designed for communication from a human to an industrial robot. A data set of dynamic gestures is designed and constructed, and it will be shared with the community. A convolutional neural network is developed to recognize the dynamic gestures in real time using the motion history image and deep learning methods. An improved open-source speech recognizer is used for real-time speech recognition of the human worker. An integration strategy is proposed to integrate the gesture and speech recognition results, and a software interface is designed for system visualization. A multi-threading architecture is constructed for simultaneously operating multiple tasks, including gesture and speech data collection and recognition, data integration, robot control, and software interface operation. The various methods and algorithms are integrated to develop the HRC system, with a platform constructed to demonstrate the system performance. The experimental results validate the feasibility and effectiveness of the proposed algorithms and the HRC system.
more »
« less
- Award ID(s):
- 1954548
- PAR ID:
- 10352879
- Date Published:
- Journal Name:
- Journal of Manufacturing Science and Engineering
- Volume:
- 144
- Issue:
- 10
- ISSN:
- 1087-1357
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Human-robot collaboration (HRC) is a challenging task in modern industry and gesture communication in HRC has attracted much interest. This paper proposes and demonstrates a dynamic gesture recognition system based on Motion History Image (MHI) and Convolutional Neural Networks (CNN). Firstly, ten dynamic gestures are designed for a human worker to communicate with an industrial robot. Secondly, the MHI method is adopted to extract the gesture features from video clips and generate static images of dynamic gestures as inputs to CNN. Finally, a CNN model is constructed for gesture recognition. The experimental results show very promising classification accuracy using this method.more » « less
-
Abstract Gestures that accompany speech are an essential part of natural and efficient embodied human communication. The automatic generation of such co‐speech gestures is a long‐standing problem in computer animation and is considered an enabling technology for creating believable characters in film, games, and virtual social spaces, as well as for interaction with social robots. The problem is made challenging by the idiosyncratic and non‐periodic nature of human co‐speech gesture motion, and by the great diversity of communicative functions that gestures encompass. The field of gesture generation has seen surging interest in the last few years, owing to the emergence of more and larger datasets of human gesture motion, combined with strides in deep‐learning‐based generative models that benefit from the growing availability of data. This review article summarizes co‐speech gesture generation research, with a particular focus on deep generative models. First, we articulate the theory describing human gesticulation and how it complements speech. Next, we briefly discuss rule‐based and classical statistical gesture synthesis, before delving into deep learning approaches. We employ the choice of input modalities as an organizing principle, examining systems that generate gestures from audio, text and non‐linguistic input. Concurrent with the exposition of deep learning approaches, we chronicle the evolution of the related training data sets in terms of size, diversity, motion quality, and collection method (e.g., optical motion capture or pose estimation from video). Finally, we identify key research challenges in gesture generation, including data availability and quality; producing human‐like motion; grounding the gesture in the co‐occurring speech in interaction with other speakers, and in the environment; performing gesture evaluation; and integration of gesture synthesis into applications. We highlight recent approaches to tackling the various key challenges, as well as the limitations of these approaches, and point toward areas of future development.more » « less
-
We present GhostAR, a time-space editor for authoring and acting Human-Robot-Collaborative (HRC) tasks in-situ. Our system adopts an embodied authoring approach in Augmented Reality (AR), for spatially editing the actions and programming the robots through demonstrative role-playing. We propose a novel HRC workflow that externalizes user’s authoring as demonstrative and editable AR ghost, allowing for spatially situated visual referencing, realistic animated simulation, and collaborative action guidance. We develop a dynamic time warping (DTW) based collaboration model which takes the real-time captured motion as inputs, maps it to the previously authored human actions, and outputs the corresponding robot actions to achieve adaptive collaboration. We emphasize an in-situ authoring and rapid iterations of joint plans without an offline training process. Further, we demonstrate and evaluate the effectiveness of our workflow through HRC use cases and a three-session user study.more » « less
-
null (Ed.)Gesture recognition has become increasingly important in human-computer interaction and can support different applications such as smart home, VR, and gaming. Traditional approaches usually rely on dedicated sensors that are worn by the user or cameras that require line of sight. In this paper, we present fine-grained finger gesture recognition by using commodity WiFi without requiring user to wear any sensors. Our system takes advantages of the fine-grained Channel State Information available from commodity WiFi devices and the prevalence of WiFi network infrastructures. It senses and identifies subtle movements of finger gestures by examining the unique patterns exhibited in the detailed CSI. We devise environmental noise removal mechanism to mitigate the effect of signal dynamic due to the environment changes. Moreover, we propose to capture the intrinsic gesture behavior to deal with individual diversity and gesture inconsistency. Lastly, we utilize multiple WiFi links and larger bandwidth at 5GHz to achieve finger gesture recognition under multi-user scenario. Our experimental evaluation in different environments demonstrates that our system can achieve over 90% recognition accuracy and is robust to both environment changes and individual diversity. Results also show that our system can provide accurate gesture recognition under different scenarios.more » « less
An official website of the United States government

