skip to main content

Title: Enabling Fine-grained Finger Gesture Recognition on Commodity WiFi Devices
Gesture recognition has become increasingly important in human-computer interaction and can support different applications such as smart home, VR, and gaming. Traditional approaches usually rely on dedicated sensors that are worn by the user or cameras that require line of sight. In this paper, we present fine-grained finger gesture recognition by using commodity WiFi without requiring user to wear any sensors. Our system takes advantages of the fine-grained Channel State Information available from commodity WiFi devices and the prevalence of WiFi network infrastructures. It senses and identifies subtle movements of finger gestures by examining the unique patterns exhibited in the detailed CSI. We devise environmental noise removal mechanism to mitigate the effect of signal dynamic due to the environment changes. Moreover, we propose to capture the intrinsic gesture behavior to deal with individual diversity and gesture inconsistency. Lastly, we utilize multiple WiFi links and larger bandwidth at 5GHz to achieve finger gesture recognition under multi-user scenario. Our experimental evaluation in different environments demonstrates that our system can achieve over 90% recognition accuracy and is robust to both environment changes and individual diversity. Results also show that our system can provide accurate gesture recognition under different scenarios.
; ;
Award ID(s):
1910519 1820624
Publication Date:
Journal Name:
IEEE Transactions on Mobile Computing
Page Range or eLocation-ID:
1 to 1
Sponsoring Org:
National Science Foundation
More Like this
  1. WiFi human sensing has become increasingly attractive in enabling emerging human-computer interaction applications. The corresponding technique has gradually evolved from the classification of multiple activity types to more fine-grained tracking of 3D human poses. However, existing WiFi-based 3D human pose tracking is limited to a set of predefined activities. In this work, we present Winect, a 3D human pose tracking system for free-form activity using commodity WiFi devices. Our system tracks free-form activity by estimating a 3D skeleton pose that consists of a set of joints of the human body. In particular, we combine signal separation and joint movement modeling to achieve free-form activity tracking. Our system first identifies the moving limbs by leveraging the two-dimensional angle of arrival of the signals reflected off the human body and separates the entangled signals for each limb. Then, it tracks each limb and constructs a 3D skeleton of the body by modeling the inherent relationship between the movements of the limb and the corresponding joints. Our evaluation results show that Winect is environment-independent and achieves centimeter-level accuracy for free-form activity tracking under various challenging environments including the none-line-of-sight (NLoS) scenarios.
  2. A reliable neural-machine interface is essential for humans to intuitively interact with advanced robotic hands in an unconstrained environment. Existing neural decoding approaches utilize either discrete hand gesture-based pattern recognition or continuous force decoding with one finger at a time. We developed a neural decoding technique that allowed continuous and concurrent prediction of forces of different fingers based on spinal motoneuron firing information. High-density skin-surface electromyogram (HD-EMG) signals of finger extensor muscle were recorded, while human participants produced isometric flexion forces in a dexterous manner (i.e. produced varying forces using either a single finger or multiple fingers concurrently). Motoneuron firing information was extracted from the EMG signals using a blind source separation technique, and each identified neuron was further classified to be associated with a given finger. The forces of individual fingers were then predicted concurrently by utilizing the corresponding motoneuron pool firing frequency of individual fingers. Compared with conventional approaches, our technique led to better prediction performances, i.e. a higher correlation ([Formula: see text] versus [Formula: see text]), a lower prediction error ([Formula: see text]% MVC versus [Formula: see text]% MVC), and a higher accuracy in finger state (rest/active) prediction ([Formula: see text]% versus [Formula: see text]%). Our decodingmore »method demonstrated the possibility of classifying motoneurons for different fingers, which significantly alleviated the cross-talk issue of EMG recordings from neighboring hand muscles, and allowed the decoding of finger forces individually and concurrently. The outcomes offered a robust neural-machine interface that could allow users to intuitively control robotic hands in a dexterous manner.« less
  3. User authentication is a critical process in both corporate and home environments due to the ever-growing security and privacy concerns. With the advancement of smart cities and home environments, the concept of user authentication is evolved with a broader implication by not only preventing unauthorized users from accessing confidential information but also providing the opportunities for customized services corresponding to a specific user. Traditional approaches of user authentication either require specialized device installation or inconvenient wearable sensor attachment. This article supports the extended concept of user authentication with a device-free approach by leveraging the prevalent WiFi signals made available by IoT devices, such as smart refrigerator, smart TV, and smart thermostat, and so on. The proposed system utilizes the WiFi signals to capture unique human physiological and behavioral characteristics inherited from their daily activities, including both walking and stationary ones. Particularly, we extract representative features from channel state information (CSI) measurements of WiFi signals, and develop a deep-learning-based user authentication scheme to accurately identify each individual user. To mitigate the signal distortion caused by surrounding people’s movements, our deep learning model exploits a CNN-based architecture that constructively combines features from multiple receiving antennas and derives more reliable feature abstractions. Furthermore,more »a transfer-learning-based mechanism is developed to reduce the training cost for new users and environments. Extensive experiments in various indoor environments are conducted to demonstrate the effectiveness of the proposed authentication system. In particular, our system can achieve over 94% authentication accuracy with 11 subjects through different activities.« less
  4. Abstract Audio-based sensing enables fine-grained human activity detection, such as sensing hand gestures and contact-free estimation of the breathing rate. A passive adversary, equipped with microphones, can leverage the ongoing sensing to infer private information about individuals. Further, with multiple microphones, a beamforming-capable adversary can defeat the previously-proposed privacy protection obfuscation techniques. Such an adversary can isolate the obfuscation signal and cancel it, even when situated behind a wall. AudioSentry is the first to address the privacy problem in audio sensing by protecting the users against a multi-microphone adversary. It utilizes the commodity and audio-capable devices, already available in the user’s environment, to form a distributed obfuscator array. AudioSentry packs a novel technique to carefully generate obfuscation beams in different directions, preventing the multi-microphone adversary from canceling the obfuscation signal. AudioSentry follows by a dynamic channel estimation scheme to preserve authorized sensing under obfuscation. AudioSentry offers the advantages of being practical to deploy and effective against an adversary with a large number of microphones. Our extensive evaluations with commodity devices show that protects the user’s privacy against a 16-microphone adversary with only four commodity obfuscators, regardless of the adversary’s position. AudioSentry provides its privacy-preserving features with little overhead on themore »authorized sensor.« less
  5. Predicting the occupancy related information in an environment has been investigated to satisfy the myriad requirements of various evolving pervasive, ubiquitous, opportunistic and participatory sensing applications. Infrastructure and ambient sensors based techniques have been leveraged largely to determine the occupancy of an environment incurring a significant deployment and retrofitting costs. In this paper, we advocate an infrastructure-less zero-configuration multimodal smartphone sensor-based techniques to detect fine-grained occupancy information. We propose to exploit opportunistically smartphones' acoustic sensors in presence of human conversation and motion sensors in absence of any conversational data. We develop a novel speaker estimation algorithm based on unsupervised clustering of overlapped and non-overlapped conversational data to determine the number of occupants in a crowded environment. We also design a hybrid approach combining acoustic sensing opportunistically with locomotive model to further improve the occupancy detection accuracy. We evaluate our algorithms in different contexts, conversational, silence and mixed in presence of 10 domestic users. Our experimental results on real-life data traces collected from 10 occupants in natural setting show that using this hybrid approach we can achieve approximately 0.76 error count distance for occupancy detection accuracy on average.