skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Heavy-tailed Streaming Statistical Estimation
We consider the task of heavy-tailed statistical estimation given streaming p-dimensional samples. This could also be viewed as stochastic optimization under heavy-tailed distributions, with an additional O(p) space complexity constraint. We design a clipped stochastic gradient descent algorithm and provide an improved analysis, under a more nuanced condition on the noise of the stochastic gradients, which we show is critical when analyzing stochastic optimization problems arising from general statistical estimation problems. Our results guarantee convergence not just in expectation but with exponential concentration, and moreover does so using O(1) batch size. We provide consequences of our results for mean estimation and linear regression. Finally, we provide empirical corroboration of our results and algorithms via synthetic experiments for mean estimation and linear regression.  more » « less
Award ID(s):
1934584
PAR ID:
10352884
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Conference on Artificial Intelligence and Statistics (AISTATS)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Motivated by robust and quantile regression problems, we investigate the stochastic gradient descent (SGD) algorithm for minimizing an objective functionfthat is locally strongly convex with a sub--quadratic tail. This setting covers many widely used online statistical methods. We introduce a novel piecewise Lyapunov function that enables us to handle functionsfwith only first-order differentiability, which includes a wide range of popular loss functions such as Huber loss. Leveraging our proposed Lyapunov function, we derive finite-time moment bounds under general diminishing stepsizes, as well as constant stepsizes. We further establish the weak convergence, central limit theorem and bias characterization under constant stepsize, providing the first geometrical convergence result for sub--quadratic SGD. Our results have wide applications, especially in online statistical methods. In particular, we discuss two applications of our results. 1) Online robust regression: We consider a corrupted linear model with sub--exponential covariates and heavy--tailed noise. Our analysis provides convergence rates comparable to those for corrupted models with Gaussian covariates and noise. 2) Online quantile regression: Importantly, our results relax the common assumption in prior work that the conditional density is continuous and provide a more fine-grained analysis for the moment bounds. 
    more » « less
  2. Stochastic (sub)gradient methods require step size schedule tuning to perform well in practice. Classical tuning strategies decay the step size polynomially and lead to optimal sublinear rates on (strongly) convex problems. An alternative schedule, popular in nonconvex optimization, is called geometric step decay and proceeds by halving the step size after every few epochs. In recent work, geometric step decay was shown to improve exponentially upon classical sublinear rates for the class of sharp convex functions. In this work, we ask whether geometric step decay similarly improves stochastic algorithms for the class of sharp weakly convex problems. Such losses feature in modern statistical recovery problems and lead to a new challenge not present in the convex setting: the region of convergence is local, so one must bound the probability of escape. Our main result shows that for a large class of stochastic, sharp, nonsmooth, and nonconvex problems a geometric step decay schedule endows well-known algorithms with a local linear (or nearly linear) rate of convergence to global minimizers. This guarantee applies to the stochastic projected subgradient, proximal point, and prox-linear algorithms. As an application of our main result, we analyze two statistical recovery tasks—phase retrieval and blind deconvolution—and match the best known guarantees under Gaussian measurement models and establish new guarantees under heavy-tailed distributions. 
    more » « less
  3. Abstract We explore why many recently proposed robust estimation problems are efficiently solvable, even though the underlying optimization problems are non-convex. We study the loss landscape of these robust estimation problems, and identify the existence of ’generalized quasi-gradients’. Whenever these quasi-gradients exist, a large family of no-regret algorithms are guaranteed to approximate the global minimum; this includes the commonly used filtering algorithm. For robust mean estimation of distributions under bounded covariance, we show that any first-order stationary point of the associated optimization problem is an approximate global minimum if and only if the corruption level $$\epsilon < 1/3$$. Consequently, any optimization algorithm that approaches a stationary point yields an efficient robust estimator with breakdown point $1/3$. With carefully designed initialization and step size, we improve this to $1/2$, which is optimal. For other tasks, including linear regression and joint mean and covariance estimation, the loss landscape is more rugged: there are stationary points arbitrarily far from the global minimum. Nevertheless, we show that generalized quasi-gradients exist and construct efficient algorithms. These algorithms are simpler than previous ones in the literature, and for linear regression we improve the estimation error from $$O(\sqrt{\epsilon })$$ to the optimal rate of $$O(\epsilon )$$ for small $$\epsilon $$ assuming certified hypercontractivity. For mean estimation with near-identity covariance, we show that a simple gradient descent algorithm achieves breakdown point $1/3$ and iteration complexity $$\tilde{O}(d/\epsilon ^2)$$. 
    more » « less
  4. We study the problem of differentially private stochastic convex optimization (DP-SCO) with heavy-tailed gradients, where we assume a kth-moment bound on the Lipschitz constants of sample functions rather than a uniform bound. We propose a new reduction-based approach that enables us to obtain the first optimal rates (up to logarithmic factors) in the heavy-tailed setting, achieving error G2⋅1n√+Gk⋅(d√nϵ)1−1k under (ϵ,δ)-approximate differential privacy, up to a mild $$\textup{polylog}(\frac{1}{\delta})$$ factor, where G22 and Gkk are the 2nd and kth moment bounds on sample Lipschitz constants, nearly-matching a lower bound of [Lowy and Razaviyayn 2023]. We further give a suite of private algorithms in the heavy-tailed setting which improve upon our basic result under additional assumptions, including an optimal algorithm under a known-Lipschitz constant assumption, a near-linear time algorithm for smooth functions, and an optimal linear time algorithm for smooth generalized linear models. 
    more » « less
  5. In this paper, we propose differentially private algorithms for robust (multivariate) mean estimation and inference under heavy-tailed distributions, with a focus on Gaussian differential privacy. First, we provide a comprehensive analysis of the Huber mean estimator with increasing dimensions, including non-asymptotic deviation bound, Bahadur representation, and (uniform) Gaussian approximations. Secondly, we privatize the Huber mean estimator via noisy gradient descent, which is proven to achieve near-optimal statistical guarantees. The key is to characterize quantitatively the trade-off between statistical accuracy, degree of robustness and privacy level, governed by a carefully chosen robustification parameter. Finally, we construct private confidence intervals for the proposed estimator by incorporating a private and robust covariance estimator. Our findings are demonstrated by simulation studies. 
    more » « less