skip to main content


Search for: All records

Award ID contains: 1934584

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In weakly supervised learning, we aim to reduce the growing demand for labeled data in current machine learning applications. In this paper, we introduce a novel analysis of the classical label propagation algorithm (LPA) (Zhu & Ghahramani, 2002) that takes advantage of useful prior information, specifically probabilistic hypothesized labels on the unlabeled data. We provide an error bound that exploits both the local geometric properties of the underlying graph and the quality of the prior information. We also propose a framework to incorporate multiple sources of noisy information. In particular, we consider the setting of weak supervision, where our sources of information are weak labelers. We demonstrate the ability of our approach on multiple benchmark weakly supervised classification tasks, showing improvements upon existing semi-supervised and weakly supervised methods. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  2. Empirical risk minimization (ERM) is known to be non-robust in practice to distributional shift where the training and the test distributions are different. A suite of approaches, such as importance weighting, and variants of distributionally robust optimization (DRO), have been proposed to solve this problem. But a line of recent work has empirically shown that these approaches do not significantly improve over ERM in real applications with distribution shift. The goal of this work is to obtain a comprehensive theoretical understanding of this intriguing phenomenon. We first posit the class of Generalized Reweighting (GRW) algorithms, as a broad category of approaches that iteratively update model parameters based on iterative reweighting of the training samples. We show that when overparameterized models are trained under GRW, the resulting models are close to that obtained by ERM. We also show that adding small regularization which does not greatly affect the empirical training accuracy does not help. Together, our results show that a broad category of what we term GRW approaches are not able to achieve distributionally robust generalization. Our work thus has the following sobering takeaway: to make progress towards distributionally robust generalization, we either have to develop non-GRW approaches, or perhaps devise novel classification/regression loss functions that are adapted to GRW approaches. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  3. We consider the task of heavy-tailed statistical estimation given streaming p-dimensional samples. This could also be viewed as stochastic optimization under heavy-tailed distributions, with an additional O(p) space complexity constraint. We design a clipped stochastic gradient descent algorithm and provide an improved analysis, under a more nuanced condition on the noise of the stochastic gradients, which we show is critical when analyzing stochastic optimization problems arising from general statistical estimation problems. Our results guarantee convergence not just in expectation but with exponential concentration, and moreover does so using O(1) batch size. We provide consequences of our results for mean estimation and linear regression. Finally, we provide empirical corroboration of our results and algorithms via synthetic experiments for mean estimation and linear regression. 
    more » « less
  4. The unsupervised task of aligning two or more distributions in a shared latent space has many applications including fair representations, batch effect mitigation, and unsupervised domain adaptation. Existing flow-based approaches estimate multiple flows independently, which is equivalent to learning multiple full generative models. Other approaches require adversarial learning, which can be computationally expensive and challenging to optimize. Thus, we aim to jointly align multiple distributions while avoiding adversarial learning. Inspired by efficient alignment algorithms from optimal transport (OT) theory for univariate distributions, we develop a simple iterative method to build deep and expressive flows. Our method decouples each iteration into two subproblems: 1) form a variational approximation of a distribution divergence and 2) minimize this variational approximation via closed-form invertible alignment maps based on known OT results. Our empirical results give evidence that this iterative algorithm achieves competitive distribution alignment at low computational cost while being able to naturally handle more than two distributions. 
    more » « less
  5. null (Ed.)
    Subseasonal climate forecasting is the task of predicting climate variables, such as temperature and precipitation, in a two-week to two-month time horizon. The primary predictors for such prediction problem are spatio-temporal satellite and ground measurements of a variety of climate variables in the atmosphere, ocean, and land, which however have rather limited predictive signal at the subseasonal time horizon. We propose a carefully constructed spatial hierarchical Bayesian regression model that makes use of the inherent spatial structure of the subseasonal climate prediction task. We use our Bayesian model to then derive decision-theoretically optimal point estimates with respect to various performance measures of interest to climate science. As we show, our approach handily improves on various off-the-shelf ML baselines. Since our method is based on a Bayesian frame- work, we are also able to quantify the uncertainty in our predictions, which is particularly crucial for difficult tasks such as the subseasonal prediction, where we expect any model to have considerable uncertainty at different test locations under differ- ent scenarios. 
    more » « less