skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data-science driven autonomous process optimization
Abstract Autonomous process optimization involves the human intervention-free exploration of a range process parameters to improve responses such as product yield and selectivity. Utilizing off-the-shelf components, we develop a closed-loop system for carrying out parallel autonomous process optimization experiments in batch. Upon implementation of our system in the optimization of a stereoselective Suzuki-Miyaura coupling, we find that the definition of a set of meaningful, broad, and unbiased process parameters is the most critical aspect of successful optimization. Importantly, we discern that phosphine ligand, a categorical parameter, is vital to determination of the reaction outcome. To date, categorical parameter selection has relied on chemical intuition, potentially introducing bias into the experimental design. In seeking a systematic method for selecting a diverse set of phosphine ligands, we develop a strategy that leverages computed molecular feature clustering. The resulting optimization uncovers conditions to selectively access the desired product isomer in high yield.  more » « less
Award ID(s):
1925607
PAR ID:
10352899
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Communications Chemistry
Volume:
4
Issue:
1
ISSN:
2399-3669
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many scientific problems can be formulated as sparse regression, i.e., regression onto a set of parameters when there is a desire or expectation that some of the parameters are exactly zero or do not substantially contribute. This includes many problems in signal and image processing, system identification, optimization, and parameter estimation methods such as Gaussian process regression. Sparsity facilitates exploring high-dimensional spaces while finding parsimonious and interpretable solutions. In the present work, we illustrate some of the important ways in which sparse regression appears in plasma physics and point out recent contributions and remaining challenges to solving these problems in this field. A brief review is provided for the optimization problem and the state-of-the-art solvers, especially for constrained and high-dimensional sparse regression. 
    more » « less
  2. Abstract Modern CAD tools represent 3D designs not only as geometry, but also as a program composed of geometric operations, each of which depends on a set of parameters. Program representations enable meaningful and controlled shape variations via parameter changes. However, achieving desired modifications solely through parameter editing is challenging when CAD models have not been explicitly authored to expose select degrees of freedom in advance. We introduce a novel bidirectional editing system for 3D CAD programs. In addition to editing the CAD program, users can directly manipulate 3D geometry and our system infers parameter updates to keep both representations in sync. We formulate inverse edits as a set of constrained optimization objectives, returning plausible updates to program parameters that both match user intent and maintain program validity. Our approach implements an automatically differentiable domain‐specific language for CAD programs, providing derivatives for this optimization to be performed quickly on any expressed program. Our system enables rapid, interactive exploration of a constrained 3D design space by allowing users to manipulate the program and geometry interchangeably during design iteration. While our approach is not designed to optimize across changes in geometric topology, we show it is expressive and performant enough for users to produce a diverse set of design variants, even when the CAD program contains a relatively large number of parameters. 
    more » « less
  3. The success of the unscented Kalman filter can be jeopardized if the required initial parameters are not identified carefully. These parameters include the initial guesses and the levels of uncertainty in the target parameters and the process and measurement noise parameters. While a set of appropriate initial target parameters give the unscented Kalman filter a head start, the uncertainty levels and noise parameters set the rate of convergence in the process. Therefore, due to the coupling effect of these parameters, an inclusive approach is desired to maintain the chance of convergence for expensive experimental tests. In this paper, a framework is proposed that, via a virtual emulation prior to the experiment, determines a set of initial conditions to ensure a successful application of the online parameter identification. A Bayesian optimization method is proposed, which considers the level of confidence in the initial guesses for the target parameters to suggest the appropriate noise covariance matrices. The methodology is validated on a five-story shear frame tested on a shake table. The results indicate that, indeed, a trade-off can be made between the robustness of the online updating and the final parameter accuracy. 
    more » « less
  4. Quantum switches are envisioned to be an integral component of future entanglement distribution networks. They can provide high quality entanglement distribution service to end-users by performing quantum operations such as entanglement swapping and entanglement purification. In this work, we characterize the capacity region of such a quantum switch under noisy channel transmissions and imperfect quantum operations. We express the capacity region as a function of the channel and network parameters (link and entanglement swap success probability), entanglement purification yield and application level parameters (target fidelity threshold). In particular, we provide necessary conditions to verify if a set of request rates belong to the capacity region of the switch. We use these conditions to find the maximum achievable end-to-end user entanglement generation throughput by solving a set of linear optimization problems. We develop a max-weight scheduling policy and prove that the policy stabilizes the switch for all feasible request arrival rates. As we develop scheduling policies, we also generate new results for computing the conditional yield distribution of different classes of purification protocols. The conclusions obtained in this work can yield useful guidelines for subsequent quantum switch designs. 
    more » « less
  5. Yamashita, Y.; Kano, M. (Ed.)
    In this work surrogate assisted optimization is utilized to calibrate predictive molecular models, called force fields, used in molecular simulations to reproduce the liquid density of a hydrofluorocarbon refrigerant molecule. A previous calibration workflow which relied on Gaussian process regression models and large Latin hypercube samples to screen force field parameter space is extended to include Bayesian optimization methods to efficiently guide the search for force field parameters. In comparison to the previous work, the Bayesian-based calibration workflow finds a parameter set which results in a lower objective function value than the original workflow after evaluating approximately 50% fewer parameter sets. It is envisioned that this updated workflow will facilitate rapid force field optimization enabling screening of vast molecular design space. 
    more » « less