skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High Curie temperature ferromagnetic structures of (Sb2Te3)1−x(MnSb2Te4)x with x = 0.7–0.8
Abstract Magnetic topological materials are promising for realizing novel quantum physical phenomena. Among these, bulk Mn-rich MnSb 2 Te 4 is ferromagnetic due to Mn Sb antisites and has relatively high Curie temperatures (T C ), which is attractive for technological applications. We have previously reported the growth of materials with the formula (Sb 2 Te 3 ) 1−x (MnSb 2 Te 4 ) x , where x varies between 0 and 1. Here we report on their magnetic and transport properties. We show that the samples are divided into three groups based on the value of x (or the percent septuple layers within the crystals) and their corresponding T C values. Samples that contain x < 0.7 or x > 0.9 have a single T C value of 15–20 K and 20–30 K, respectively, while samples with 0.7 < x < 0.8 exhibit two T C values, one (T C1 ) at ~ 25 K and the second (T C2 ) reaching values above 80 K, almost twice as high as any reported value to date for these types of materials. Structural analysis shows that samples with 0.7 < x < 0.8 have large regions of only SLs, while other regions have isolated QLs embedded within the SL lattice. We propose that the SL regions give rise to a T C1 of ~ 20 to 30 K, and regions with isolated QLs are responsible for the higher T C2 values. Our results have important implications for the design of magnetic topological materials having enhanced properties.  more » « less
Award ID(s):
2112550
PAR ID:
10422399
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tuning the properties of magnetic topological materials is of interest to realize exotic physical phenomena, new quantum phases and quasiparticles, and topological spintronic devices. However, current topological materials exhibit Curie temperature (TC) values far below those needed for practical applications. In recent years, significant progress has been made to control and optimize TC, particularly through defect-engineering of these structures. Most recently, we reported TC values up to 80 K for (MnSb2Te4)x(Sb2Te3)1−x when 0.7 ≤ x ≤ 0.85 by controlling the composition x and the Mn content in these structures during molecular beam epitaxy growth. In this study, we show further enhancement of the TC, as high as 100 K, by maintaining high Mn content and reducing the growth rate from 0.9 nm/min to 0.5 nm/min. Derivative curves of the Hall resistance and the magnetization reveal the presence of two TC components contributing to the overall value and suggest TC1 and TC2 have distinct origins: excess Mn in MnSb2Te4 septuple layers (SLs) and high Mn content in Sb2−yMnyTe3 quintuple layer (QL) alloys, respectively. To elucidate the mechanisms promoting higher TC values in this system, we show evidence of enhanced structural disorder due to the excess Mn that occupies not only Sb sites but also Te sites, leading to the formation of a new crystal structure for these materials. Learning to control defects that enhance desired magnetic properties and understanding the mechanisms that promote high TC in magnetic topological materials such as (Mn1+ySb2−yTe4)x(Sb2−yMnyTe3)1−x is of great importance to achieve practical quantum devices. 
    more » « less
  2. Abstract The intrinsic magnetic topological insulator, Mn(Bi1−xSbx)2Te4, has been identified as a Weyl semimetal with a single pair of Weyl nodes in its spin-aligned strong-field configuration. A direct consequence of the Weyl state is the layer dependent Chern number,$$C$$ C . Previous reports in MnBi2Te4thin films have shown higher$$C$$ C states either by increasing the film thickness or controlling the chemical potential. A clear picture of the higher Chern states is still lacking as data interpretation is further complicated by the emergence of surface-band Landau levels under magnetic fields. Here, we report a tunable layer-dependent$$C$$ C  = 1 state with Sb substitution by performing a detailed analysis of the quantization states in Mn(Bi1−xSbx)2Te4dual-gated devices—consistent with calculations of the bulk Weyl point separation in the doped thin films. The observed Hall quantization plateaus for our thicker Mn(Bi1−xSbx)2Te4films under strong magnetic fields can be interpreted by a theory of surface and bulk spin-polarised Landau level spectra in thin film magnetic topological insulators. 
    more » « less
  3. The ternary manganese pnictide phases, MnAs 1− x Sb x , are of interest for magnetic refrigeration and waste heat recovery due to their magnetocaloric properties, maximized at the Curie temperature ( T C ), which varies from 580–240 K, depending on composition. Nanoparticles potentially enable application in microelectronics (cooling) or graded composites that can operate over a wide temperature range, but manganese pnictides are synthetically challenging to realize as discrete nanoparticles and their fundamental magnetic properties have not been extensively studied. Accordingly, colloidal synthesis methods were employed to target discrete MnAs x Sb 1− x nanoparticles ( x = 0.1–0.9) by arrested precipitation reactions of Mn 2 (CO) 10 with (C 6 H 5 ) 3 AsO and (C 6 H 5 ) 3 Sb in coordinating solvents. The MnAs x Sb 1− x particles are spherical in morphology with average diameters 10–13 nm (standard deviations <20% based on transmission electron microscopy analysis). X-Ray fluorescence spectroscopy measurements on ensembles showed that all phases had an excess of Sb relative to the targeted composition, whereas energy dispersive spectroscopic mapping data of single particles revealed that the nanoparticles are inhomogeneous, adopting a core–shell structure, with the amorphous shell rich in Mn and O (and sometimes Sb) while the crystalline core is rich in Mn, As, and Sb. Magnetization measurements of the nanoparticle ensemble demonstrated the presence of both ferromagnetic and paramagnetic phases. By combining the magnetization measurements with precision chemical mapping and simple modeling, we were able to unambiguously attribute ferromagnetism to the MnAs x Sb 1− x crystalline core, whereas paramagnetism was attributed to the amorphous shell. Magnetization measurements at variable temperatures were used to determine the superparamagnetic transition of the nanoparticles, although for some compositions and particle sizes the blocking temperature exceeded room temperature. Preliminary magnetic studies also revealed a conventional dependence between core size and coercivity, in spite of variable compositions of the nanoparticles, an unexpected result. 
    more » « less
  4. Abstract Spintronics, an evolving interdisciplinary field at the intersection of magnetism and electronics, explores innovative applications of electron charge and spin properties for advanced electronic devices. The topological Hall effect (THE), a key component in spintronics, has gained significance due to emerging theories surrounding noncoplanar chiral spin textures. This study focuses on Mn2‐xZnxSb, a material crystalizing in centrosymmetric space group with rich magnetic phases tunable by Zn contents. Through comprehensive magnetic and transport characterizations, we found that the high‐Zn (x > 0.6) samples display THE which is enhanced with decreasing temperature, while THE in the low‐Zn (x < 0.6) samples show an opposite trend. The coexistence of those distinct temperature dependencies for THE suggests very different magnetic interactions/structures for different compositions and underscores the strong coupling between magnetism and transport in Mn2‐xZnxSb. The findings contribute to understanding topological magnetism in centrosymmetric tetragonal lattices, establishing Mn2‐xZnxSb as a unique platform for exploring tunable transport effects and opening avenues for further exploration in the realm of spintronics. 
    more » « less
  5. null (Ed.)
    The Zintl phases, Yb 14 M Sb 11 ( M = Mn, Mg, Al, Zn), are now some of the highest thermoelectric efficiency p-type materials with stability above 873 K. Yb 14 MnSb 11 gained prominence as the first p-type thermoelectric material to double the efficiency of SiGe alloy, the heritage material in radioisotope thermoelectric generators used to power NASA’s deep space exploration. This study investigates the solid solution of Yb 14 Mg 1− x Al x Sb 11 (0 ≤ x ≤ 1), which enables a full mapping of the metal-to-semiconductor transition. Using a combined theoretical and experimental approach, we show that a second, high valley degeneracy ( N v = 8) band is responsible for the groundbreaking performance of Yb 14 M Sb 11 . This multiband understanding of the properties provides insight into other thermoelectric systems (La 3− x Te 4 , SnTe, Ag 9 AlSe 6 , and Eu 9 CdSb 9 ), and the model predicts that an increase in carrier concentration can lead to zT > 1.5 in Yb 14 M Sb 11 systems. 
    more » « less