skip to main content

Title: Social Experience Interacts with Serotonin to Affect Functional Connectivity in the Social Behavior Network following Playback of Social Vocalizations in Mice
Authors:
; ; ;
Award ID(s):
1456298
Publication Date:
NSF-PAR ID:
10352975
Journal Name:
eneuro
Volume:
8
Issue:
2
Page Range or eLocation-ID:
ENEURO.0247-20.2021
ISSN:
2373-2822
Sponsoring Org:
National Science Foundation
More Like this
  1. Theories such as social baseline theory have argued that social groups serve a regulatory function but have not explored whether this regulatory process carries costs for the group. Allostatic load, the wear and tear on regulatory systems caused by chronic or frequent stress, is marked by diminished stress system flexibility and compromised recovery. We argue that allostatic load may develop within social groups as well and provide a model for how relationship dysfunction operates. Social allostatic load may be characterized by processes such as groups becoming locked into static patterns of interaction and may ultimately lead to up-regulation or down-regulation of a group’s set point, or the optimal range of arousal or affect around which the group tends to converge. Many studies of emotional and physiological linkage within groups have reported that highly correlated states of arousal, which may reflect failure to maintain a group-level regulatory baseline, occur in the context of stress, conflict, and relationship distress. Relationship strain may also place greater demands on neurocognitive regulatory processes. Just as allostatic load may be detrimental to individual health, social allostatic load may corrode relationship quality.

  2. Methods matter. They influence what we know and who we come to know about in the context of hazards and disasters. Research methods are of profound importance to the scholarly advancement of the field and, accordingly, a growing number of publications focus on research methods and ethical practices associated with the study of extreme events. Still, notable gaps exist. The National Science Foundation-funded Social Science Extreme Events Research (SSEER) network was formed, in part, to respond to the need for more specific information about the status and expertise of the social science hazards and disaster research workforce. Drawing on data from 1,013 SSEER members located across five United Nations (UN) regions, this article reports on the demographic characteristics of SSEER researchers; provides a novel inventory of methods used by social science hazards and disaster researchers; and explores how methodological approaches vary by specific researcher attributes including discipline, professional status, researcher type based on level of involvement in the field, hazard/disaster type studied, and disaster phase studied. The results have implications for training, mentoring, and workforce development initiatives geared toward ensuring that a diverse next generation of social science researchers is prepared to study the root causes and social consequences ofmore »disasters.« less