skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Phase Nonreciprocity of Microwave‐Frequency Surface Acoustic Waves in Hybrid Heterostructures with Magnetoelastic Coupling
Abstract Magnetoelastic coupling is considered as one of the most reliable method to induce nonreciprocity of propagation losses of microwave‐frequency surface acoustic waves (SAW) and other acoustic modes propagating in nonmagnetic‐ferromagnetic heterostructures. Here, it is demonstrated theoretically that magnetoelastic coupling can also induce phase nonreciprocity of SAW, which is necessary for the development of SAW circulators and other nonreciprocal solid‐state‐acoustic devices. In contrast to previous studies, induction of the phase nonreciprocity requires the coupling of SAW to a strongly nonreciprocal spin wave (SW), having the nonreciprocal splitting of the SW spectrum much larger than the strength of the magnetoelastic coupling, which, in turn, should be much larger than the geometric mean of the SW and SAW damping rates. In this case, the hybridized SAW in the spectral region between the magnetoelastic gaps demonstrate significant phase nonreciprocity, retaining, at the same time, propagation losses that are close to those of unhybridized SAW. Possible practical realization of nonreciprocal SAW phase shifters and SAW‐ring‐based circulators based on hybridized waves in acoustic crystal and synthetic antiferromagnetic heterostructures is discussed.  more » « less
Award ID(s):
1641989
PAR ID:
10449041
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Electronic Materials
Volume:
7
Issue:
8
ISSN:
2199-160X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Using time-resolved magneto-optical Kerr effect (TR-MOKE) microscopy, we demonstrate surface-acoustic-wave (SAW) induced resonant amplification of intrinsic spin-wave (SW) modes, as well as generation of new extrinsic or driven modes at the SAW frequency, in a densely packed two-dimensional array of elliptical Co nanomagnets fabricated on a piezoelectric LiNbO 3 substrate. This system can efficiently serve as a magnonic crystal (MC), where the intrinsic shape anisotropy and the strong inter-element magnetostatic interaction trigger the incoherent precession of the nanomagnets' magnetization in the absence of any bias magnetic field, giving rise to the ‘intrinsic’ SW modes. The magnetoelastic coupling leads to a rich variety of SW phenomena when the SAW is launched along the major axis of the nanomagnets, such as 4–7 times amplification of intrinsic modes (at 3, 4, 7 and 10 GHz) when the applied SAW frequencies are resonant with these frequencies, and the generation of new extrinsic modes at non-resonant SAW frequencies. However, when the SAW is launched along the minor axis, a dominant driven mode appears at the applied SAW frequency. This reveals that the magnetoelastic coupling between SW and SAW is anisotropic in nature. Micromagnetic simulation results are in qualitative agreement with the experimental observations and elucidate the underlying dynamics. Our findings lay the groundwork for bias-field free magnonics, where the SW behavior is efficiently tuned by SAWs. It has important applications in the design of energy efficient on-chip microwave devices, SW logic, and extreme sub-wavelength ultra-miniaturized microwave antennas for embedded applications. 
    more » « less
  2. Abstract We observed strong tripartite magnon-phonon-magnon coupling in a two-dimensional periodic array of magnetostrictive nanomagnets deposited on a piezoelectric substrate, forming a 2D magnetoelastic “crystal”; the coupling occurred between two Kittel-type spin wave (magnon) modes and a (non-Kittel) magnetoelastic spin wave mode caused by a surface acoustic wave (SAW) (phonons). The strongest coupling occurred when the frequencies and wavevectors of the three modes matched, leading to perfect phase matching. We achieved this condition by carefully engineering the frequency of the SAW, the nanomagnet dimensions and the bias magnetic field that determined the frequencies of the two Kittel-type modes. The strong coupling (cooperativity factor exceeding unity) led to the formation of a new quasi-particle, called a binary magnon-polaron, accompanied by nearly complete (~100%) transfer of energy from the magnetoelastic mode to the two Kittel-type modes. This coupling phenomenon exhibited significant anisotropy since the array did not have rotational symmetry in space. The experimental observations were in good agreement with the theoretical simulations. 
    more » « less
  3. In a reciprocal system, all the wave travels in the same way backward as forward. When the exchange between the source and detectors result in different transmittance, non-Hermiticity is granted but the nonreciprocity needs to be carefully evaluated. Although most of the integrated circuits are reciprocal, unexpected nonreciprocal response may emerge in the system, especially the tunable components containing asymmetrically coupled resonators, traveling wave electrodes and hysteresis response. The nonreciprocity may result in unexpected signal distribution, distortion and errors in analogue circuits of electrical and photonic networks. With proper engineering, the nonreciprocity can be leveraged and optimized for suppressing the laser noise in photonic systems as isolators, reducing the circuits duplication as circulators. The radio-frequency nonreciprocity can be used for protecting the high power amplifiers from oscillation and damage. Asymmetric coupling can also be useful in simplifying the circuit complexity and reducing crosstalk in the optical interconnect transceiver circuits. 
    more » « less
  4. Acoustically driven ferromagnetic resonance (ADFMR) is a platform that enables efficient generation and detection of spin waves via magnetoelastic coupling with surface acoustic waves (SAWs). While previous studies successfully achieved ADFMR in ferromagnetic metals, there are only few reports on ADFMR in magnetic insulators such as yttrium iron garnet (Y3Fe5O12, YIG) despite more favorable spin wave properties, including low damping and long coherence length. The growth of high-quality YIG films for ADFMR devices is a major challenge due to poor lattice-matching and thermal degradation of the piezoelectric substrates during film crystallization. In this work, we demonstrate ADFMR of YIG thin films on LiNbO3 (LNO) substrates. We employed a SiOx buffer layer and rapid thermal annealing for crystallization of YIG films with minimal thermal degradation of LNO substrates. Optimized ADFMR device designs and time-gating measurements were used to enhance the ADFMR signal and overcome the intrinsically low magnetoelastic coupling of YIG. YIG films have a polycrystalline structure with an in-plane easy direction due to biaxial stresses induced during cooling after crystallization. The YIG device shows clear ADFMR patterns with maximum absorption for H ≈ 160 mT parallel to SAW propagation, which is consistent with our simulation results based on existing theoretical models. These results expand possibilities for developing efficient spin wave devices with magnetic insulators. 
    more » « less
  5. Abstract The ability to create linear systems that manifest broadband nonreciprocal wave propagation would provide for exquisite control over acoustic signals for electronic filtering in communication and noise control. Acoustic nonreciprocity has predominately been achieved by approaches that introduce nonlinear interaction, mean-flow biasing, smart skins, and spatio-temporal parametric modulation into the system. Each approach suffers from at least one of the following drawbacks: the introduction of modulation tones, narrow band filtering, and the interruption of mean flow in fluid acoustics. We now show that an acoustic media that is non-local and active provides a new means to break reciprocity in a linear fashion without these deleterious effects. We realize this media using a distributed network of interlaced subwavelength sensor–actuator pairs with unidirectional signal transport. We exploit this new design space to create a stable metamaterial with non-even dispersion relations and electronically tunable nonreciprocal behavior over a broad range of frequencies. 
    more » « less