skip to main content

Title: The ionization fraction in OMC-2 and OMC-3
Context. The electron density ( n e − ) plays an important role in setting the chemistry and physics of the interstellar medium. However, measurements of n e − in neutral clouds have been directly obtained only toward a few lines of sight or they rely on indirect determinations. Aims. We use carbon radio recombination lines and the far-infrared lines of C + to directly measure n e − and the gas temperature in the envelope of the integral shaped filament (ISF) in the Orion A molecular cloud. Methods. We observed the C102 α (6109.901 MHz) and C109 α (5011.420 MHz) carbon radio recombination lines (CRRLs) using the Effelsberg 100 m telescope at ≈2′ resolution toward five positions in OMC-2 and OMC-3. Since the CRRLs have similar line properties, we averaged them to increase the signal-to-noise ratio of the spectra. We compared the intensities of the averaged CRRLs, and the 158 μm-[CII] and [ 13 CII] lines to the predictions of a homogeneous model for the C + /C interface in the envelope of a molecular cloud and from this comparison we determined the electron density, temperature and C + column density of the gas. Results. We detect the CRRLs toward more » four positions, where their velocity ( v LSR  ≈ 11 km s −1 ) and widths ( σ v  ≈ 1 km s −1 ) confirms that they trace the envelope of the ISF. Toward two positions we detect the CRRLs, and the 158 μm-[CII] and [ 13 CII] lines with a signal-to-noise ratio ≥5, and we find n e −  = 0.65 ± 0.12 cm −3 and 0.95 ± 0.02 cm −3 , which corresponds to a gas density n H  ≈ 5 × 10 3 cm −3 and a thermal pressure of p th  ≈ 4 × 10 5 K cm −3 . We also constrained the ionization fraction in the denser portions of the molecular cloud using the HCN(1–0) and C 2 H(1–0) lines to x (e − ) ≤ 3 × 10 −6 . Conclusions. The derived electron densities and ionization fraction imply that x (e − ) drops by a factor ≥100 between the C + layer and the regions probed by HCN(1–0). This suggests that electron collisional excitation does not play a significant role in setting the excitation of HCN(1–0) toward the region studied, as it is responsible for only ≈10% of the observed emission. « less
Authors:
; ; ; ; ; ;
Award ID(s):
1909097
Publication Date:
NSF-PAR ID:
10353189
Journal Name:
Astronomy & Astrophysics
Volume:
653
Page Range or eLocation-ID:
A102
ISSN:
0004-6361
Sponsoring Org:
National Science Foundation
More Like this
  1. Exploiting the sensitivity of the IRAM NOrthern Extended Millimeter Array (NOEMA) and its ability to process large instantaneous bandwidths, we have studied the morphology and other properties of the molecular gas and dust in the star forming galaxy, H-ATLAS J131611.5+281219 (HerBS-89a), at z = 2.95. High angular resolution (0 . ″3) images reveal a partial 1 . ″0 diameter Einstein ring in the dust continuum emission and the molecular emission lines of 12 CO(9−8) and H 2 O(2 02  − 1 11 ). Together with lower angular resolution (0 . ″6) images, we report the detection of a series of molecular lines including the three fundamental transitions of the molecular ion OH + , namely (1 1  − 0 1 ), (1 2  − 0 1 ), and (1 0  − 0 1 ), seen in absorption; the molecular ion CH + (1 − 0) seen in absorption, and tentatively in emission; two transitions of amidogen (NH 2 ), namely (2 02  − 1 11 ) and (2 20  − 2 11 ) seen in emission; and HCN(11 − 10) and/or NH(1 2  − 0 1 ) seen in absorption. The NOEMA data are complemented with Very Large Array data tracing the 12 CO(1 − 0) emission line, which provides a measurement ofmore »the total mass of molecular gas and an anchor for a CO excitation analysis. In addition, we present Hubble Space Telescope imaging that reveals the foreground lensing galaxy in the near-infrared (1.15  μ m). Together with photometric data from the Gran Telescopio Canarias, we derive a photometric redshift of z phot = 0.9 −0.5 +0.3 for the foreground lensing galaxy. Modeling the lensing of HerBS-89a, we reconstruct the dust continuum (magnified by a factor μ  ≃ 5.0) and molecular emission lines (magnified by μ  ∼ 4 − 5) in the source plane, which probe scales of ∼0 . ″1 (or 800 pc). The 12 CO(9 − 8) and H 2 O(2 02  − 1 11 ) emission lines have comparable spatial and kinematic distributions; the source-plane reconstructions do not clearly distinguish between a one-component and a two-component scenario, but the latter, which reveals two compact rotating components with sizes of ≈1 kpc that are likely merging, more naturally accounts for the broad line widths observed in HerBS-89a. In the core of HerBS-89a, very dense gas with n H 2  ∼ 10 7 − 9 cm −3 is revealed by the NH 2 emission lines and the possible HCN(11 − 10) absorption line. HerBS-89a is a powerful star forming galaxy with a molecular gas mass of M mol  = (2.1 ± 0.4) × 10 11   M ⊙ , an infrared luminosity of L IR  = (4.6 ± 0.4) × 10 12   L ⊙ , and a dust mass of M dust  = (2.6 ± 0.2) × 10 9   M ⊙ , yielding a dust-to-gas ratio δ GDR  ≈ 80. We derive a star formation rate SFR = 614 ± 59  M ⊙ yr −1 and a depletion timescale τ depl  = (3.4 ± 1.0) × 10 8 years. The OH + and CH + absorption lines, which trace low (∼100 cm −3 ) density molecular gas, all have their main velocity component red-shifted by Δ V  ∼ 100 km s −1 relative to the global CO reservoir. We argue that these absorption lines trace a rare example of gas inflow toward the center of a galaxy, indicating that HerBS-89a is accreting gas from its surroundings.« less
  2. Context. Ionized interstellar gas is an important component of the interstellar medium and its lifecycle. The recent evidence for a widely distributed highly ionized warm interstellar gas with a density intermediate between the warm ionized medium (WIM) and compact H  II regions suggests that there is a major gap in our understanding of the interstellar gas. Aims. Our goal is to investigate the properties of the dense WIM in the Milky Way using spectrally resolved SOFIA GREAT [N  II ] 205 μm fine-structure lines and Green Bank Telescope hydrogen radio recombination lines (RRL) data, supplemented by spectrally unresolved Herschel PACS [N  II ] 122μm data, and spectrally resolved 12 CO. Methods. We observed eight lines of sight (LOS) in the 20° < l < 30° region in the Galactic plane. We analyzed spectrally resolved lines of [N  II ] at 205 μm and RRL observations, along with the spectrally unresolved Herschel PACS 122 μm emission, using excitation and radiative transfer models to determine the physical parameters of the dense WIM. We derived the kinetic temperature, as well as the thermal and turbulent velocity dispersions from the [N  II ] and RRL linewidths. Results. The regions with [N  II ] 205more »μm emission are characterized by electron densities, n ( e ) ~ 10−35 cm −3 , temperatures range from 3400 to 8500 K, and nitrogen column densities N(N + ) ~ 7 × 10 16 to 3 × 10 17 cm −2 . The ionized hydrogen column densities range from 6 × 10 20 to 1.7 × 10 21 cm −2 and the fractional nitrogen ion abundance x (N + ) ~ 1.1 × 10 −4 to 3.0 × 10 −4 , implying an enhanced nitrogen abundance at a distance ~4.3 kpc from the Galactic Center. The [N  II ] 205 μm emission lines coincide with CO emission, although often with an offset in velocity, which suggests that the dense warm ionized gas is located in, or near, star-forming regions, which themselves are associated with molecular gas. Conclusions. These dense ionized regions are found to contribute ≳50% of the observed [C  II ] intensity along these LOS. The kinetic temperatures we derive are too low to explain the presence of N + resulting from electron collisional ionization and/or proton charge transfer of atomic nitrogen. Rather, these regions most likely are ionized by extreme ultraviolet (EUV) radiation from nearby star-forming regions or as a result of EUV leakage through a clumpy and porous interstellar medium.« less
  3. Abstract

    We have observed the compact H ii region complex nearest to the dynamical center of the Galaxy, G−0.02−0.07, using ALMA in the H42α recombination line, CS J = 2–1, H13CO+J = 1–0, and SiO v = 0, J = 2–1 emission lines, and the 86 GHz continuum emission. The H ii regions HII-A to HII-C in the cluster are clearly resolved into a shell-like feature with a bright half and a dark half in the recombination line and continuum emission. The analysis of the absorption features in the molecular emission lines show that H ii-A, B, and C are located on the near side of the “Galactic center 50 km s−1 molecular cloud” (50MC), but HII-D is located on the far side of it. The electron temperatures and densities ranges are Te = 5150–5920 K and ne = 950–2340 cm−3, respectively. The electron temperatures in the bright half are slightly lower than those in the dark half, while the electron densities in the bright half are slightly higher than those in the dark half. The H ii regions are embedded in the ambient molecular gas. There are some molecular gas components compressed by a C-type shock wave around the H ii regions. From the line width of the H42αmore »recombination line, the expansion velocities of HII-A, HII-B, HII-C, and HII-D are estimated to be Vexp = 16.7, 11.6, 11.1, and 12.1 km s−1, respectively. The expansion timescales of HII-A, HII-B, HII-C, and HII-D are estimated to be tage ≃ 1.4 × 104, 1.7 × 104, 2.0 × 104, and 0.7 × 104 yr, respectively. The spectral types of the central stars from HII-A to HII-D are estimated to be O8V, O9.5V, O9V, and B0V, respectively. These derived spectral types are roughly consistent with the previous radio estimation. The positional relation among the H ii regions, the SiO molecule enhancement area, and Class-I maser spots suggest that a shock wave caused by a cloud–cloud collision propagated along the line from HII-C to HII-A in the 50MC. The shock wave would have triggered the massive star formation.

    « less
  4. Abstract Observations of HCN and HCO + have been carried out toward 13 planetary nebulae (PNe) using the facilities of the Arizona Radio Observatory (ARO). These nebulae represent a wide range of morphologies and ages (∼2000–28,000 yr). For both molecules, the J = 1 → 0 transitions at 88–89 GHz and the J = 3 → 2 lines at 265–267 GHz were measured, together with CO lines ( J = 1 → 0, 2 → 1, and 3 → 2, depending on the source), using the ARO 12 m and Submillimeter Telescopes. HCN and HCO + were detected with at least one transition in 10 nebulae: He 2-459, Hu 1-1, K3-52, K3-65, M1-8, M1-40, M1-59, M2-53, M4-17, and NGC 6445. HCO + was additionally identified via two transitions in Na 2. Some observed line profiles were complex, with multiple velocity components tracing varied outflows. From radiative transfer modeling, column densities were established for HCN and HCO + : N tot (HCN) = 0.005–1.1 × 10 14 and N tot (HCO + ) = 0.008–9.5 × 10 13 cm −2 . Gas densities of n (H 2 ) ∼ 10 5 –10 7 cm −3 were also determined for all PNe.more »Fractional abundances with respect to H 2 , calculated using CO as a proxy, are f (HCN) ∼ 0.2–1.5 × 10 −7 and f (HCO + ) ∼ 0.3–5.1 × 10 −8 . The abundances of HCN and HCO + did not significantly vary with nebular age to 28,000 yr. Combined with previous observations, at least 30 PNe contain HCN and/or HCO + , indicating that polyatomic molecules are common constituents of these objects. The data strongly support a scenario where dense ejecta from PNe seed the interstellar medium with molecular material.« less
  5. We investigate the molecular gas content of z  ∼ 6 quasar host galaxies using the Institut de Radioastronomie Millimétrique Northern Extended Millimeter Array. We targeted the 3 mm dust continuum, and the line emission from CO(6–5), CO(7–6), and [C  I ] 2−1 in ten infrared–luminous quasars that have been previously studied in their 1 mm dust continuum and [C  II ] line emission. We detected CO(7–6) at various degrees of significance in all the targeted sources, thus doubling the number of such detections in z  ∼ 6 quasars. The 3 mm to 1 mm flux density ratios are consistent with a modified black body spectrum with a dust temperature T dust  ∼ 47 K and an optical depth τ ν  = 0.2 at the [C  II ] frequency. Our study provides us with four independent ways to estimate the molecular gas mass, M H2 , in the targeted quasars. This allows us to set constraints on various parameters used in the derivation of molecular gas mass estimates, such as the mass per luminosity ratios α CO and α [CII] , the gas-to-dust mass ratio δ g/d , and the carbon abundance [C]/H 2 . Leveraging either on the dust, CO, [C  I ], ormore »[C  II ] emission yields mass estimates of the entire sample in the range M H2  ∼ 10 10 –10 11 M ⊙ . We compared the observed luminosities of dust, [C  II ], [C  I ], and CO(7–6) with predictions from photo-dissociation and X-ray dominated regions. We find that the former provide better model fits to our data, assuming that the bulk of the emission arises from dense ( n H  > 10 4 cm −3 ) clouds with a column density N H  ∼ 10 23 cm −2 , exposed to a radiation field with an intensity of G 0  ∼ 10 3 (in Habing units). Our analysis reiterates the presence of massive reservoirs of molecular gas fueling star formation and nuclear accretion in z  ∼ 6 quasar host galaxies. It also highlights the power of combined 3 mm and 1 mm observations for quantitative studies of the dense gas content in massive galaxies at cosmic dawn.« less