We quantified cephalopods consumed by longnose lancetfish (
- Editors:
- Dam, Hans G.
- Publication Date:
- NSF-PAR ID:
- 10353259
- Journal Name:
- PLOS ONE
- Volume:
- 17
- Issue:
- 5
- Page Range or eLocation-ID:
- e0267761
- ISSN:
- 1932-6203
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Alepisaurus ferox ,n = 1267 stomachs containing cephalopod remains) from 2009 to 2018 in the central North Pacific Ocean (between 0–35° N and 135–175° W). When cephalopods identified from beak remains in the stomach contents were included in diet analyses, clear increases in the abundance of gelatinous taxa and the inferred foraging depths of lancetfish were evident. Ontogeny in cephalopod consumption was evident for lancetfish, corroborating past diet studies. Small lancetfish (fork length < 97 cm) fed on smaller, muscular cephalopods from shallow habitats (0–500 m, e.g., Ommastrephidae, Onychoteuthidae), while large lancetfish (fork length ≥ 97 cm) consumed larger, gelatinous cephalopods from deeper waters (depths greater than 500 m, e.g., Amphitretidae, Cranchiidae). Cephalopod beaks were more abundant in the diets of large lancetfish, representing 37.8% of identified cephalopods, numerically. Although beaks likely remain in stomachs longer than soft tissues, they did not simply accumulate with increasing predator size. Cephalopods identified from beaks were also significantly larger than those identified from soft tissues. Despite having low average energy densities, large gelatinous cephalopods are important prey for lancetfish in deep habitats, with energetic values that are comparable to smaller, more muscular cephalopods (95.3 ± 125.8 kJ and 120.2 ± 169.4 kJ, respectively). Holistic consideration of cephalopod beaks in diet analyses will help to elucidate predator foraging behaviors and themore » -
Abstract Anthropogenic stressors have strong impacts on ecosystems. To understand their influence, detailed knowledge about trophic relationships among species is critical. However, this requires both exceptional resolution in dietary assessments and sampling breadth within communities, especially for highly diverse, tropical ecosystems.
We used gut content metabarcoding across a broad range of coral reef fishes (8 families, 22 species) in Mo'orea, French Polynesia, to test whether this technique has the potential to capture the structure of a hyperdiverse marine food web. Moreover, we explored whether taxonomic groups (families) and traditional, broad‐scale trophic assignments explained fish diet across four different metrics of quantifying predator–prey interactions.
Metabarcoding yielded a large number (4,341) of unique operational taxonomic units (i.e. prey) with high‐resolution taxonomic assignments (i.e. often to the level of genus or species). We demonstrate that across multiple metrics, taxonomic group at the family level is a consistently better, albeit still weak, predictor of empirical trophic relationships than frequently used, broad‐scale functional assignments. Our method also reveals a complex trophic network with fine‐scale partitioning among species, further emphasizing the importance of examining fish diets beyond broad trophic categories.
We demonstrate the capacity of metabarcoding to reconstruct diverse and complex food webs with exceptional resolution, a significant advancementmore »
-
Abstract Large-scale studies on community ecology are highly desirable but often difficult to accomplish due to the considerable investment of time, labor and, money required to characterize richness, abundance, relatedness, and interactions. Nonetheless, such large-scale perspectives are necessary for understanding the composition, dynamics, and resilience of biological communities. Small invertebrates play a central role in ecosystems, occupying critical positions in the food web and performing a broad variety of ecological functions. However, it has been particularly difficult to adequately characterize communities of these animals because of their exceptionally high diversity and abundance. Spiders in particular fulfill key roles as both predator and prey in terrestrial food webs and are hence an important focus of ecological studies. In recent years, large-scale community analyses have benefitted tremendously from advances in DNA barcoding technology. High-throughput sequencing (HTS), particularly DNA metabarcoding, enables community-wide analyses of diversity and interactions at unprecedented scales and at a fraction of the cost that was previously possible. Here, we review the current state of the application of these technologies to the analysis of spider communities. We discuss amplicon-based DNA barcoding and metabarcoding for the analysis of community diversity and molecular gut content analysis for assessing predator-prey relationships. We alsomore »
-
Abstract Salps are gelatinous planktonic suspension feeders that filter large volumes of water in the food‐dilute open ocean. Their life cycle allows periodic exponential growth and population blooms. Dense swarms of salps have a high grazing impact that can deplete the photic zone of phytoplankton and export huge quantities of organic matter to the deep sea. Previous studies described their feeding manner as mostly nonselective, with larger particles retained at higher efficiencies than small particles. To examine salp diets, we used direct in situ sampling (InEx method) of undisturbed solitary
. Aggregates (“chains”) ofSalpa maxima andSalpa fusiformis were studied using in situ incubations. Our findings suggest that in situ feeding rates are higher than previously reported and that cell removal is size independent with ∼ 1Thalia democratica μ m picoeukaryotes preferentially removed over both larger eukaryotes and smaller bacteria. The prey : predator size ratios we measured (1 : 104–1 : 105) are an order of magnitude smaller than previously reported values and to the best of our knowledge, are the smallest values reported so far for any planktonic suspension feeders. Despite differences among the three species studied, they had similar prey preferences with no correlation between salp body length and prey size.more » -
Abstract Predator–prey interactions shape ecosystems and can help maintain biodiversity. However, for many of the earth's most biodiverse and abundant organisms, including terrestrial arthropods, these interactions are difficult or impossible to observe directly with traditional approaches. Based on previous theory, it is likely that predator–prey interactions for these organisms are shaped by a combination of predator traits, including body size and species‐specific hunting strategies. In this study, we combined diet DNA metabarcoding data of 173 individual invertebrate predators from nine species (a total of 305 individual predator–prey interactions) with an extensive community body size data set of a well‐described invertebrate community to explore how predator traits and identity shape interactions. We found that (1) mean size of prey families in the field usually scaled with predator size, with species‐specific variation to a general size‐scaling relationship (exceptions likely indicating scavenging or feeding on smaller life stages). We also found that (2) although predator hunting traits, including web and venom use, are thought to shape predator–prey interaction outcomes, predator identity more strongly influenced our indirect measure of the relative size of predators and prey (predator:prey size ratios) than either of these hunting traits. Our findings indicate that predator body size and speciesmore »