skip to main content


Title: Gelatinous cephalopods as important prey for a deep-sea fish predator
Abstract

We quantified cephalopods consumed by longnose lancetfish (Alepisaurus ferox,n = 1267 stomachs containing cephalopod remains) from 2009 to 2018 in the central North Pacific Ocean (between 0–35° N and 135–175° W). When cephalopods identified from beak remains in the stomach contents were included in diet analyses, clear increases in the abundance of gelatinous taxa and the inferred foraging depths of lancetfish were evident. Ontogeny in cephalopod consumption was evident for lancetfish, corroborating past diet studies. Small lancetfish (fork length < 97 cm) fed on smaller, muscular cephalopods from shallow habitats (0–500 m, e.g., Ommastrephidae, Onychoteuthidae), while large lancetfish (fork length ≥ 97 cm) consumed larger, gelatinous cephalopods from deeper waters (depths greater than 500 m, e.g., Amphitretidae, Cranchiidae). Cephalopod beaks were more abundant in the diets of large lancetfish, representing 37.8% of identified cephalopods, numerically. Although beaks likely remain in stomachs longer than soft tissues, they did not simply accumulate with increasing predator size. Cephalopods identified from beaks were also significantly larger than those identified from soft tissues. Despite having low average energy densities, large gelatinous cephalopods are important prey for lancetfish in deep habitats, with energetic values that are comparable to smaller, more muscular cephalopods (95.3 ± 125.8 kJ and 120.2 ± 169.4 kJ, respectively). Holistic consideration of cephalopod beaks in diet analyses will help to elucidate predator foraging behaviors and the trophic and ecological roles of gelatinous cephalopods in deep pelagic food webs.

 
more » « less
Award ID(s):
2011031
NSF-PAR ID:
10380455
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Marine Biology
Volume:
169
Issue:
12
ISSN:
0025-3162
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Medina Guerrero, Antonio (Ed.)
    Pacific bluefin tuna, Thunnus orientalis , migrates from spawning grounds in the western Pacific Ocean to foraging grounds in the California Current System (CCS), where they are thought to specialize on high energy, surface schooling prey. However, there has been substantial variability in estimates of forage availability in the CCS over the past two decades. To examine the foraging ecology of juvenile T . orientalis in the face this variability, we quantified the diet and prey energetics of 963 individuals collected in the Southern California Bight (SCB) from 2008 to 2016. Using classification and regression tree analysis, we observed three sampling periods characterized by distinct prey. In 2008, T . orientalis diet was dominated by midwater lanternfishes and enoploteuthid squids. During 2009–2014, T . orientalis consumed diverse fishes, cephalopods, and crustaceans. Only in 2015–2016 did T . orientalis specialize on relatively high energy, surface schooling prey (e.g. anchovy, pelagic red crab). Despite containing the smallest prey, stomachs collected in 2009–2014 had the highest number of prey and similar total energetic contents to stomachs collected in 2015–2016. We demonstrate that T . orientalis is an opportunistic predator that can exhibit distinct foraging behaviors to exploit diverse forage. Expanding our understanding of T . orientalis foraging ecology will improve our ability to predict its responses to changes in resource availability as well as potential impacts on the fisheries it supports. 
    more » « less
  2. Dam, Hans G. (Ed.)
    Siphonophores (Cnidaria: Hydrozoa) are abundant and diverse gelatinous predators in open-ocean ecosystems. Due to limited access to the midwater, little is known about the diets of most deep-dwelling gelatinous species, which constrains our understanding of food-web structure and nutrient flow in these vast ecosystems. Visual gut-content methods can rarely identify soft-bodied rapidly-digested prey, while observations from submersibles often overlook small prey items. These methods have been differentially applied to shallow and deep siphonophore taxa, confounding habitat and methodological biases. DNA metabarcoding can be used to assess both shallow and deep species’ diets under a common methodological framework, since it can detect both small and gelatinous prey. We (1) further characterized the diets of open-ocean siphonophores using DNA metabarcoding, (2) compared the prey detected by visual and molecular methods to evaluate their technical biases, and (3) evaluated tentacle-based predictions of diet. To do this, we performed DNA metabarcoding analyses on the gut contents of 39 siphonophore species across depths to describe their diets, using six barcode regions along the 18S gene. Taxonomic identifications were assigned using public databases combined with local zooplankton sequences. We identified 55 unique prey items, including crustaceans, gelatinous animals, and fish across 47 siphonophore specimens in 24 species. We reported 29 novel predator-prey interactions, among them the first insights into the diets of nine siphonophore species, many of which were congruent with the dietary predictions based on tentilla morphology. Our analyses detected both small and gelatinous prey taxa underrepresented by visual methods in species from both shallow and deep habitats, indicating that siphonophores play similar trophic roles across depth habitats. We also reveal hidden links between siphonophores and filter-feeders near the base of the food web. This study expands our understanding of the ecological roles of siphonophores in the open ocean, their trophic roles within the ‘jelly-web’, and the importance of their diversity for nutrient flow and ecosystem functioning. Understanding these inconspicuous yet ubiquitous predator-prey interactions is critical to predict the impacts of climate change, overfishing, and conservation policies on oceanic ecosystems. 
    more » « less
  3. Abstract

    Pelagic predators are effective biological samplers of midtrophic taxa and are especially useful in deep-sea habitats where relatively mobile taxa frequently avoid observation with conventional methods. We examined specimens sampled from the stomachs of longnose lancetfish,Alepisaurus ferox, to describe the diets and foraging behaviors of three common, but poorly known deep-sea fishes: the hammerjaw (Omosudis lowii, n = 79, 0.3–92 g), juvenile common fangtooth (Anoplogaster cornuta, n = 91, 0.6–22 g), and juvenileAl. ferox(n = 138, 0.3–744 g). Diet overlap among the three species was high, with five shared prey families accounting for 63 ± 11% of the total prey mass per species. However, distinct differences in foraging strategies and prey sizes were evident. Resource partitioning was greatest betweenAn. cornutathat specialized on small (mean = 0.13 ± 0.11 g), shallow-living hyperiid amphipods andO. lowiithat specialized on large (mean = 0.97 ± 0.45 g), deep-dwelling hatchetfishes. JuvenileAl. feroxforaged on a high diversity of prey from both shallow and deep habitats. We describe the foraging ecologies of three midtrophic fish competitors and demonstrate the potential for biological samplers to improve our understanding of deep-sea food webs.

     
    more » « less
  4. Abstract

    The contractile protein myosinIIis ubiquitous in muscle. It is widely accepted that animals express tissue‐specific myosin isoforms that differ in amino acid sequence andATPase activity in order to tune muscle contractile velocities. Recent studies, however, suggested that the squidDoryteuthis pealeiimight be an exception; members of this species do not express muscle‐specific myosin isoforms, but instead alter sarcomeric ultrastructure to adjust contractile velocities. We investigated whether this alternative mechanism of tuning muscle contractile velocity is found in other coleoid cephalopods. We analyzed myosin heavy chain transcript sequences and expression profiles from muscular tissues of a cuttlefish,Sepia officinalis, and an octopus,Octopus bimaculoides, to determine if these cephalopods express tissue‐specific myosin heavy chain isoforms. We identified transcripts of four and six different myosin heavy chain isoforms inS. officinalisandO. bimaculoidesmuscular tissues, respectively. Transcripts of all isoforms were expressed in all muscular tissues studied, and thusS. officinalisandO. bimaculoidesdo not appear to express tissue‐specific muscle myosin isoforms. We also examined the sarcomeric ultrastructure in the transverse muscle fibers of the arms ofO. bimaculoidesand the arms and tentacles ofS. officinalisusing transmission electron microscopy and found that the fast contracting fibers of the prey capture tentacles ofS. officinalishave shorter thick filaments than those found in the slower transverse muscle fibers of the arms of both species. It thus appears that coleoid cephalopods, including the cuttlefish and octopus, may use ultrastructural modifications rather than tissue‐specific myosin isoforms to adjust contractile velocities.

     
    more » « less
  5. Abstract

    Rapid advances in genomic tools for use in ecological contexts and non‐model systems allow unprecedented insight into interactions that occur beyond direct observation. We developed an approach that couples microbial forensics with molecular dietary analysis to identify species interactions and scavenging by invasive rats on native and introduced birds in Hawaii. First, we characterized bacterial signatures of bird carcass decay by conducting 16S rRNA high‐throughput sequencing on chicken (Gallus gallus domesticus) tissues collected over an 11‐day decomposition study in natural Hawaiian habitats. Second, we determined if field‐collected invasive black rats (Rattus rattus;n = 51, stomach and fecal samples) had consumed birds using molecular diet analysis with two independent PCR assays (mitochondrial Cytochrome Oxidase I and Cytochrome b genes) and Sanger sequencing. Third, we characterized the gut microbiome of the same rats using 16S rRNA high‐throughput sequencing and identified 15 bacterial taxa that were (a) detected only in rats that consumed birds (n = 20/51) and (b) were indicative of decaying tissue in the chicken decomposition experiment. We found that 18% of rats (n = 9/51) likely consumed birds as carrion by the presence of bacterial biomarkers of decayed tissue in their gut microbiome. One species of native bird (Myadestes obscurus) and three introduced bird species (Lophura leucomelanos,Meleagris gallopavo,Zosterops japonicus) were detected in the rats’ diets, with individuals from these species (exceptL. nycthemera) likely consumed through scavenging. Bacterial biomarkers of bird carcass decay can persist through rat digestion and may serve as biomarkers of scavenging. Our approach can be used to reveal trophic interactions that are challenging to measure through direct observation.

     
    more » « less