skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Anisotropic colloidal particles near boundaries
Anisotropic colloidal particles are regularly found in applications ranging from health to energy. These particles, typically with non-uniform shape or surface chemistry, interact with boundaries in unique ways, offering pathways to complex assemblies and active systems. Work in this field over the past two decades rapidly advanced, with the last five years seeing significant innovation. One common thread joining many studies and applications is that of the presence of boundaries in the form of a nearby wall or neighboring particle. Asymmetry introduced by a neighboring boundary often leads to unique and surprising particle dynamics from the resulting anisotropic surface interactions. Herein, we provide background for the area, some recent distinctive examples, and describe recent work from our group developing a technique to measure surface interactions of anisotropic particles. Note that we focused on anisotropic “colloidal” particles with the size ranging from 0.1 to 10  μm in the presence of externally or internally generated fields. Within this context, we then motivate and describe recent work from our group developing an ultra-microscopy technique called Scattering Morphology Resolved Total Internal Reflection Microscopy. Finally, we finish the perspective article by identifying challenges and providing an outlook for the field.  more » « less
Award ID(s):
2023525
PAR ID:
10353297
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
131
Issue:
15
ISSN:
0021-8979
Page Range / eLocation ID:
150903
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Optical tweezers can control the position and orientation of individual colloidal particles in solution. Such control is often desirable but challenging for single-particle spectroscopy and microscopy, especially at the nanoscale. Functional nanoparticles that are optically trapped and manipulated in a three-dimensional (3D) space can serve as freestanding nanoprobes, which provide unique prospects for sensing and mapping the surrounding environment of the nanoparticles and studying their interactions with biological systems. In this perspective, we will first describe the optical forces underlying the optical trapping and manipulation of microscopic particles, then review the combinations and applications of different spectroscopy and microscopy techniques with optical tweezers. Finally, we will discuss the challenges of performing spectroscopy and microscopy on single nanoparticles with optical tweezers, the possible routes to address these challenges, and the new opportunities that will arise. 
    more » « less
  2. Gagliardi, Laura (Ed.)
    Colloidal particles with anisotropic geometries and interactions display rich phase behavior and hence have the potential to serve as the basis of functional materials, which can tunably and reversibly self-assemble into different configurations. External fields are one design parameter that can be used to manipulate how systems of colloidal particles assemble with one another. One challenge in designing new materials using anisotropic colloidal particles is understanding how an individual particle’s various anisotropic features, like geometry, affect their overall self-assembly. Here, we present the results of simulation studies that explore the self-assembly of 2D colloidal squares with offset magnetic dipoles in the presence of an external field. Annealing simulations are used to measure the equilibrium-phase behavior of systems of these particles in the ground state, when the magnetic interactions dominate over the thermal forces of the system. We find that the magnetic properties of these systems are strongly influenced by the relative number of squares with opposite “handedness”, or chirality, that are present within the system. Systems of squares that contain equal numbers of either chirality are extremely responsive to the external field; a relatively weak external field is required to magnetize them. In contrast, systems that contain only one chirality of squares are significantly less responsive to the external field; a significantly stronger external field is required to elicit the same magnetic response. Ultimately, the differing macroscopic magnetic properties of these systems are related to their microscopic self- assembly in an external field. Simulation snapshots and ground state phase diagrams illustrate how the absence of opposite chirality squares prevents systems of these particles from leaving an energetically favorable antiparallel configuration in the presence of an external field. When opposite chirality squares are present, these magnetic particles assemble into a head-to-tail configuration, therefore inducing a magnetic state 
    more » « less
  3. For polymer particles, recent studies emphasized that the particle shape—not size—plays the dominant role in novel applications in fields ranging from nanotechnology, biomedicine, to photonics, which has intensified the quest for fabrication platforms of polymer colloids with complex non-spherical (anisotropic) shapes. Here, we developed a single-step, microfluidic-supported synthesis for anisotropic polyvinyl methacrylate (PVMA) nanoparticles (NPs) by combining the advantages of microfluidics (providing homogeneous conditions for the initial emulsification process) and bulk batch synthesis (providing inhomogenous conditions for the thermal polymerization). Specifically, we tested five interfacial agents regarding their direct impact on the NP shape (from isotropic spherical to anisotropic flower-like shapes) and their concentration-dependent impact (from 0.1 mM to 20 mM) on the NP diameter (from 200 nm to 50 nm). We employed vinyl methacrylate (VMA), a monomer offering two-polymerization active sites. With our work, we contribute to a fundamental understanding of colloidal polymerization towards predictive shapes below the critical 200 nm regime. 
    more » « less
  4. Surface patterning of inorganic nanoparticles through site-selective functionalization with mixed-ligand shells or additional inorganic material is an intriguing approach to developing tailored nanomaterials with potentially novel and/or multifunctional properties. The unique physicochemical properties of such nanoparticles are likely to impact their behavior and functionality in biological environments, catalytic systems, and electronics applications, making it vital to understand how we can achieve and characterize such regioselective surface functionalization. This Feature Article will review methods by which chemists have selectively modified the surface of colloidal nanoparticles to obtain both two-sided Janus particles and nanoparticles with patchy or stripey mixed-ligand shells, as well as to achieve directed growth of mesoporous oxide materials and metals onto existing nanoparticle templates in a spatially and compositionally controlled manner. The advantages and drawbacks of various techniques used to characterize the regiospecificity of anisotropic surface coatings are discussed, as well as areas for improvement, and future directions for this field. 
    more » « less
  5. Abstract Electrophoretic deposition (EPD) of colloidal particles is a practical system for the study of crystallization and related physical phenomena. The aggregation is driven by the electroosmotic flow fields and induced dipole moments generated by the polarization of the electrode‐particle‐electrolyte interface. Here, the electrochemical control of aggregation and repulsion in the electrophoretic deposition of colloidal microspheres is reported. The nature of the observed transition depended on the composition of the solvent, switching from electrode‐driven aggregation in water to electrical field‐driven repulsion in ethanol for otherwise identical systems of colloidal microspheres. This work uses optical microscopy‐derived particles and a recently developed particle insertion method approach to extract model‐free, effective interparticle potentials to describe the ensemble behavior of the particles as a function of the solvent and electrode potential at the electrode interface. This approach can be used to understand the phase behavior of these systems based on the observable particle positions rather than a detailed understanding of the electrode‐electrolyte microphysics. This approach enables simple predictability of the static and dynamic behaviors of functional colloid‐electrode interfaces. 
    more » « less