skip to main content

Title: Assessing the influence of complex terrain on severe convective environments in northeastern Alabama
Abstract Storms crossing complex terrain can potentially encounter rapidly changing convective environments. However, our understanding of terrain-induced variability in convective stormenvironments remains limited. HRRR data are used to create climatologies of popular convective storm forecasting parameters for different wind regimes. Self-organizing maps (SOMs) are used to generate six different low-level wind regimes, characterized by different wind directions, for which popular instability and vertical wind shear parameters are averaged. The climatologies show that both instability and vertical wind shear are highly variable in regions of complex terrain, and that the spatial distributions of perturbations relative to the terrain are dependent on the low-level wind direction. Idealized simulations are used to investigate the origins of some of the perturbations seen in the SOM climatologies. The idealized simulations replicate many of the features in the SOM climatologies, which facilitates analysis of their dynamical origins. Terrain influences are greatest when winds are approximately perpendicular to the terrain. In such cases, a standing wave can develop in the lee, leading to an increase in low-level wind speed and a reduction in vertical wind shear with the valley lee of the plateau. Additionally, CAPE tends to be decreased and LCL heights are increased in the lee of the terrain where relative humidity within the boundary layer is locally decreased.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Weather and Forecasting
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Satellite- and ground-based radar observations have shown that the northern half of Argentina, South America, is a region susceptible to rapid upscale growth of deep moist convection into larger organized mesoscale convective systems (MCSs). In particular, the complex terrain of the Sierras de Córdoba is hypothesized to be vital to this upscale-growth process. A canonical orographic supercell-to-MCS transition case study was analyzed to determine the influence that complex terrain had on processes governing upscale convective growth. High-resolution numerical modeling experiments were conducted in which the terrain height of the Sierras de Córdoba was systematically modified by raising or lowering the elevation of terrain above 1000 m. The alteration of the terrain lead to both direct and indirect effects on storm morphology. A direct effect included terrain blocking of cold pools, whereas indirect effects included terrain-induced variations in pertinent storm environmental parameters (e.g., vertical wind shear, convective available potential energy). When the terrain was raised, low-level and deep-layer vertical wind shear increased, mixed-layer convective available potential energy decreased, deep moist convection initiated earlier, and cold pools were blocked and generally became stronger and deeper. The reverse occurred when the terrain was lowered, resulting in a weaker supercell that did not grow upscale into an MCS. The control simulation supercell displayed the deepest cold pool and correspondingly fastest transition from supercell to MCS, potentially revealing that the unique terrain configuration of the Sierras de Córdoba was supportive of the observed rapid upscale convective growth of this orographic supercell.

    more » « less
  2. Abstract

    This study documents the spatial and temporal distribution of the South American low-level jet (SALLJ) and quantifies its impact on the convective environment using a 6.5-month convection-permitting simulation during the Remote Sensing of Electrification, Lightning, And Mesoscale/Microscale Processes with Adaptive Ground Observations and Clouds, Aerosols, and Complex Terrain Interactions (RELAMPAGO-CACTI) campaigns. Overall, the simulation reproduces the observed SALLJ characteristics in central Argentina near the Sierras de Córdoba (SDC), a focal point for terrain-focused upscale growth. SALLJs most frequently occur in the summer with maxima to the northwest and east of the SDC and minima over the higher terrain. The shallower SALLJs (<1750 m) have a strong overnight skew, while the elevated jets are more equally spread throughout the day. SALLJ periods often have higher amounts of low-level moisture and instability compared to non-SALLJ periods, with these impacts increasing over time when the SALLJ is present and decreasing afterward. The SALLJ may enhance low-level wind shear magnitudes (particularly when accounting for the jet height); however, enhancement is somewhat limited due to the presence of speed shear in most situations. SALLJ periods are associated with low-level directional shear favorable for organized convection and an orientation of cloud-layer wind shear parallel to the terrain, which could favor upscale growth. A case study is shown in which the SALLJ influenced both the magnitude and direction of wind shear concurrent with convective upscale growth near the SDC. This study highlights the complex relationship between the SALLJ and its impacts during periods of widespread convection.

    Significance Statement

    Areas of enhanced low-level winds, or low-level jets, likely promote favorable conditions for upscale growth, the processes by which storms grow larger. Central Argentina is an ideal place to study the influence of low-level jets on upscale growth as storms often stay connected to the Sierras de Córdoba Mountain range, growing over a relatively small area. This study uses model data to describe the distribution and impact of the South American low-level jet on the storm environment. The South American low-level jet is frequently found near the Sierras de Córdoba, and moisture and convective instability increase when it is present. However, the jet’s impact on other conditions important for upscale growth, such as vertical wind shear, is not as straightforward.

    more » « less
  3. Abstract

    A multiscale analysis of the environment supporting tornadoes in southeast South America (SESA) was conducted based on a self-constructed database of 74 reports. Composites of environmental and convective parameters from ERA5 were generated relative to tornado events. The distribution of the reported tornadoes maximizes over the Argentine plains, while events are rare close to the Andes and south of Sierras de Córdoba. Events are relatively common in all seasons except in winter. Proximity environment evolution shows enhanced instability, deep-layer vertical wind shear, storm-relative helicity, reduced convective inhibition, and a lowered lifting condensation level before or during the development of tornadic storms in SESA. No consistent signal in low-level wind shear is seen during tornado occurrence. However, a curved hodograph with counterclockwise rotation is present. The Significant Tornado Parameter (STP) is also maximized prior to tornadogenesis, most strongly associated with enhanced CAPE. Differences in the convective environment between tornadoes in SESA and the U.S. Great Plains are discussed. On the synoptic scale, tornado events are associated with a strong anomalous trough crossing the southern Andes that triggers lee cyclogenesis, subsequently enhancing the South American low-level jet (SALLJ) that increases moisture advection to support deep convection. This synoptic trough also enhances vertical shear that, along with enhanced instability, sustains organized convection capable of producing tornadic storms. At planetary scales, the tornadic environment is modulated by Rossby wave trains that appear to be forced by convection near northern Australia. Madden–Julian oscillation phase 3 preferentially occurs 1–2 weeks ahead of tornado occurrence.

    Significance Statement

    The main goal of this study is to describe what atmospheric conditions (from local to global scales) are present prior to and during tornadic storms impacting southeast South America (SESA). Increasing potential for deep convection, wind shear, and potential for rotating updrafts, as well as reducing convective inhibition and cloud-base height, are predominant a few hours before and during the events in connection to low-level northerly winds enhancing moisture transport to the region. Remote convective activity near northern Australia appears to influence large-scale atmospheric circulation that subsequently triggers convective storms supporting tornadogenesis 1–2 weeks later in SESA. Our findings highlight the importance of accounting for atmospheric processes occurring at different scales to understand and predict tornado occurrences.

    more » « less
  4. Abstract

    This study examines how organized lines of deep convective storms can be impacted by a large city with a prominent urban heat island and how low‐level environmental vertical wind shear may influence the outcomes of that interaction. Idealized simulations of squall lines are conducted in which a simplified urban area—defined by perturbations to skin temperature and surface roughness length—is placed in the center of an otherwise horizontally homogeneous domain. Simulations are conducted with three different magnitudes of low‐level vertical wind shear representing “weak,” “medium,” and “strong” shear environments. Results show that storms experience noticeable modification—including enhanced downwind precipitation—after interacting with a prominent urban heat island in all three shear configurations. However, the details of the modification are a function of the shear magnitude. In the medium and strong shear simulations, updrafts are enhanced via increased buoyancy after passing over a prominent urban heat island. In contrast, little updraft strengthening is evident in the weak‐shear simulations. Instead, near‐surface winds are enhanced downwind of the urban heat island due to a more prominent descending rear‐inflow jet.

    more » « less
  5. Abstract

    The influence of vertical wind shear on updraft entrainment in squall lines is not well understood. To address this knowledge gap, a suite of high-resolution idealized numerical model simulations of squall lines were run in various vertical wind shear (hereafter “shear”) environments to study the effects of shear on entrainment in deep convective updrafts. Low-level horizontal mass flux into the leading edge of the cold pool was strongest in the simulations with the strongest low-level shear. These simulations consequently displayed wider updrafts, less entrainment-driven dilution, and larger buoyancy than the simulations with comparatively weak low-level shear. An analysis of vertical accelerations along trajectories that passed through updrafts showed larger net accelerations from buoyancy in the simulations with stronger low-level shear, which demonstrates how less entrainment-driven dilution equated to stronger updrafts. The effects of upper-level shear on entrainment and updraft vertical velocities were generally less pronounced than the effects of low-level shear. We argue that in addition to the outflow boundary-shear interactions and their effect on updraft tilt established by previous authors, decreased entrainment-driven dilution is yet another beneficial effect of strong low-level shear on squall-line updraft intensity.

    more » « less