Abstract Coastal marine heatwaves (MHWs) modulate coastal climate through ocean‐land‐atmosphere interactions, but little is known about how coastal MHWs interact with coastal cities and modify urban thermal environment. In this study, a representative urban coastal environment under MHWs is simplified to a mixed convection problem. Fourteen large‐eddy simulations (LESs) are conducted to investigate how coastal cities interact with MHWs. We consider the simulations by simple urban roughness setup (Set A) as well as explicit urban roughness representation (Set B). Besides, different MHW intensities, synoptic wind speeds, surface fluxes of urban and sea patches are considered. Results suggest that increasing MHW intensity alters streamwise potential temperature gradient and vertical velocity direction. The magnitude of vertical velocity and urban heat island (UHI) intensity decrease with increasing synoptic wind speed. Changing urban or sea surface heat flux also leads to important differences in flow and temperature fields. Comparison between Set A and B reveals a significant increase of vertical velocity magnitude and UHI intensity. To further understand this phenomenon, a canopy layer UHI model is proposed to show the relationship between UHI intensity and urban canopy, thermal heterogeneity and mean advection. The effect of urban canopy is considered in terms of an additional vertical velocity scale that facilitates heat transport from the heated surface and therefore increases UHI intensity. The model can well explain the trend of the simulated results and implies that overlooking the effect of urban canopy underestimates canopy UHI in urban coastal environment.
more »
« less
The Impact of Vertical Wind Shear on the Outcome of Interactions Between Squall Lines and Cities
Abstract This study examines how organized lines of deep convective storms can be impacted by a large city with a prominent urban heat island and how low‐level environmental vertical wind shear may influence the outcomes of that interaction. Idealized simulations of squall lines are conducted in which a simplified urban area—defined by perturbations to skin temperature and surface roughness length—is placed in the center of an otherwise horizontally homogeneous domain. Simulations are conducted with three different magnitudes of low‐level vertical wind shear representing “weak,” “medium,” and “strong” shear environments. Results show that storms experience noticeable modification—including enhanced downwind precipitation—after interacting with a prominent urban heat island in all three shear configurations. However, the details of the modification are a function of the shear magnitude. In the medium and strong shear simulations, updrafts are enhanced via increased buoyancy after passing over a prominent urban heat island. In contrast, little updraft strengthening is evident in the weak‐shear simulations. Instead, near‐surface winds are enhanced downwind of the urban heat island due to a more prominent descending rear‐inflow jet.
more »
« less
- Award ID(s):
- 1953791
- PAR ID:
- 10395642
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 128
- Issue:
- 3
- ISSN:
- 2169-897X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A new mechanism is proposed as a potential cause for the one‐third of warm season severe nocturnal convection in the US Great Plains that develops in environments without the presence of air‐mass boundaries of fronts or mesoscale systems. This mechanism is tested in two‐ and three‐dimensional models. Results show strong ascent (∼1.0 m·s−1), sufficient for nocturnal convection initiation, arising from interactions of mean westerly zonal wind with the vertical shear of a northern vortex and also perturbation westerly winds that are created by the Coriolis torque on the Great Plains southerly low‐level jet. The interaction involving the northern vortex results in organized strong ascent on the east side of the vortex from the near‐surface level to the top of the model atmosphere, and also a weak upward acceleration near the centre of the vortex. In simulations with westerly wind perturbations, strong and organized ascent occurs above and on the east side of the westerly perturbation winds. The upward motion in these simulations relies on both mechanical forcing from non‐hydrostatic pressure perturbations and buoyant acceleration caused by interactions of the westerly zonal wind and the vertical shear in the vortex or the perturbation westerly wind. Statistical tests confirm that these interactions, not the northern vortex or westerly perturbation itself and related shear, are essential for the simulated vertical motion. Additional sensitivity analysis indicates robust ascent across a wide range of westerly perturbation or northern vortex strengths. The vertical motion profile is not sensitive to the horizontal grid spacing of the model, at least at or below 4 km, but to the morphology of westerly wind perturbations. The latter suggests where improvement could be made to increase the accuracy of model prediction of nocturnal convective storms in the US Great Plains.more » « less
-
Convective-permitting ensemble simulations are used to understand the roles of thermodynamic and dynamic processes in changing intense storms over the West African Sahel due to increases in atmospheric greenhouse gas concentrations. Ensemble simulations with 16 members represent recent August conditions during the height of the boreal summer monsoon season over the Sahel. They are compared with 5 Future-Warming ensemble simulations with increased greenhouse gas concentrations under the late-21st-century high-emission SSP5-8.5 scenario and initial/boundary conditions from the Current-Climate data plus the multi-model mean anomalies derived from CMIP6 experiments. The Current-Climate simulations reproduce observed precipitation and environmental conditions over the Sahel well. The frequency of heavy rainfall events with 24-hr rainfall >77 mm (the 99.9th percentile) increases by ≥38.2% in the Future-Warming simulations. While the low- to mid-level vertical wind shear increases in the Future-Warming simulations, we find no significant correlations between the environmental shear strength and peak storm rain rates. In contrast, lower (middle) tropospheric moisture and temperature are correlated (anticorrelated) with peak rain rates and/or the maximum updraft velocity of intense events, consistent with significant correlations between the increased atmospheric instability and storm intensity. Thus, thermodynamic processes and not dynamical (shear-related) processes dominate the rainfall intensification over the Sahel in the simulations. Nevertheless, the enhanced shear strength is associated with larger rain-shield areas and propagation speeds of intense storms in Future-Warming. Wind shear strength is also correlated with pre-storm atmospheric instability, which grows less/more under strong/weak shear with greenhouse gas increases and is relevant for sub/super Clausius-Clapeyron scaling of precipitation.more » « less
-
Idealized simulations with a cloud-resolving model are conducted to examine the impact of a simplified city on the structure of a supercell thunderstorm. The simplified city is created by enhancing the surface roughness length and/or surface temperature relative to the surroundings. When the simplified city is both warmer and has larger surface roughness relative to its surroundings, the supercell that passes over it has a larger updraft helicity (at both midlevels and the surface) and enhanced precipitation and hail downwind of the city, all relative to the control simulation. The storm environment within the city has larger convective available potential energy which helps stimulate stronger low-level updrafts. Storm relative helicity (SRH) is actually reduced over the city, but enhanced in a narrow band on the northern edge of the city. This band of larger SRH is ingested by the primary updraft just prior to passing over the city, corresponding with enhancement to the near-surface mesocyclone. Additional simulations in which the simplified city is altered by removing either the heat island or surface roughness length gradient reveal that the presence of a heat island is most closely associated with enhancements in updraft helicity and low-level updrafts relative to the control simulation.more » « less
-
Abstract Urbanization affects atmospheric boundary layer dynamics by altering cloud formation and precipitation patterns through the urban heat island (UHI) effect, perturbed wind flows, and urban aerosols, that overall contribute to the urban rainfall effect (URE). This study analyzes an ensemble of numerical simulations with the Weather Research and Forecasting (WRF) model and its version with coupled chemistry and aerosols (WRF-Chem) through a Functional ANalysis Of VAriance (FANOVA) approach to isolate the urban signature from the regional climatology and to investigate the relative contributions of various mechanisms and drivers to the URE. Different metropolitan areas across the United States are analyzed and their urban land cover and anthropogenic emissions are replaced with dominant land-use categories such as grasslands or croplands and biogenic only emissions, as in neighboring regions. Our findings indicate a significant role of the urban land cover in impacting surface temperature and turbulent kinetic energy over the city, and precipitation patterns, both within and downwind of the urban environment. Moreover, simulations of a deep convection event suggest that the aerosols impact dominates the sign and spatial extent of the changes in the simulated precipitation compared to the UHI effect, leading to a significant precipitation enhancement within the urban borders and suppression in downwind regions.more » « less
An official website of the United States government
