Three-dimensional (3D) topological semimetals represent a new class of topological matters. The study of this family of materials has been at the frontiers of condensed matter physics, and many breakthroughs have been made. Several topological semimetal phases, including Dirac semimetals (DSMs), Weyl semimetals (WSMs), nodal-line semimetals (NLSMs), and triple-point semimetals, have been theoretically predicted and experimentally demonstrated. The low-energy excitation around the Dirac/Weyl nodal points, nodal line, or triply degenerated nodal point can be viewed as emergent relativistic fermions. Experimental studies have shown that relativistic fermions can result in a rich variety of exotic transport properties, e.g., extremely large magnetoresistance, the chiral anomaly, and the intrinsic anomalous Hall effect. In this review, we first briefly introduce band structural characteristics of each topological semimetal phase, then review the current studies on quantum oscillations and exotic transport properties of various topological semimetals, and finally provide a perspective of this area.
more »
« less
Topological frequency conversion in Weyl semimetals
We theoretically predict a new working principle for optical amplification, based on Weyl semimetals: when a Weyl semimetal is suitably irradiated at two frequencies, electrons close to the Weyl points convert energy between the frequencies through the mechanism of topological frequency conversion from [Martin et al, PRX 7 041008 (2017)]. Each electron converts energy at a quantized rate given by an integer multiple of Planck's constant multiplied by the product of the two frequencies. In simulations, we show that optimal, but feasible band structures can support topological frequency conversion in the "THz gap" at intensities down to 2W/mm2; the gain from the effect can exceed the dissipative loss when the frequencies are larger than the relaxation time of the system. Topological frequency conversion provides a new paradigm for optical amplification, and further extends Weyl semimetals' promise for technological applications.
more »
« less
- Award ID(s):
- 1839271
- PAR ID:
- 10353607
- Date Published:
- Journal Name:
- Physical review research
- ISSN:
- 2643-1564
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Topological semimetals are predicted to exhibit unconventional electrodynamics, but a central experimental challenge is singling out the contributions from the topological bands. TaAs is the prototypical example, where 24 Weyl points and 8 trivial Fermi surfaces make the interpretation of any experiment in terms of band topology ambiguous. We report magneto-infrared reflection spectroscopy measurements on TaAs. We observed sharp inter-Landau level transitions from a single pocket of Weyl Fermions in magnetic fields as low as 0.4 tesla. We determine the W2 Weyl point to be 8.3 meV below the Fermi energy, corresponding to a quantum limit—the field required to reach the lowest LL—of 0.8 tesla—unprecedentedly low for Weyl Fermions. LL spectroscopy allows us to isolate these Weyl Fermions from all other carriers in TaAs, and our result provides a way for directly exploring the more exotic quantum phenomena in Weyl semimetals, such as the chiral anomaly.more » « less
-
As a three-dimensional topological phase of matter, Weyl semimetals possess extremely large gyrotropic optical response in the mid-infrared region, leading to the strong chiral anomaly. This study proposes a circular polarizer design with a double-WSM-layer structure. It is theoretically shown that the proposed polarizer possesses a high circular polarization efficiency and high average transmittance in the wavelength region from 9 µm to 15 µm at incidence angles up to 50°. The modified 4 × 4 matrix method is used to calculate the circularly polarized transmittance of Weyl semimetals in thin-film or multilayer structures. The temperature dependence on the transmittance is also examined to demonstrate the flexibility of the proposed polarizer in a varying temperature environment. This study reveals the technological prospect that Weyl semimetals are promising candidates for high-performance circular polarizers in infrared spectroscopy and polarimetry.more » « less
-
The studies of topological insulators (TI) and topological semimetals have been at frontiers of condensed matter physics and material science. Both classes of materials are characterized by robust surface states created by the topology of the bulk band structures and exhibit exotic transport properties. When magnetism is present in topological materials and breaks the time-reversal symmetry, more exotic quantum phenomena can be generated, e.g., quantum anomalous Hall effect (QAHE), axion insulator, and large intrinsic AHE. In this research update, we briefly summarize the recent research progress in magnetic topological materials, including intrinsic magnetic TI and magnetic Weyl semimetals.more » « less
-
Abstract Topological semimetals represent a novel class of quantum materials displaying non‐trivial topological states that host Dirac/Weyl fermions. The intersection of Dirac/Weyl points gives rise to essential properties in a wide range of innovative transport phenomena, including extreme magnetoresistance, high mobilities, weak antilocalization, electron hydrodynamics, and various electro‐optical phenomena. In this study, the electronic, transport, phonon scattering, and interrelationships are explored in single crystals of the topological semimetal HfAs2. It reveals a weak antilocalization effect at low temperatures with high carrier density, which is attributed to perfectly compensated topological bulk and surface states. The angle‐resolved photoemission spectroscopy (ARPES) results show anisotropic Fermi surfaces and surface states indicative of the topological semimetal, further confirmed by first‐principle density functional theory (DFT) calculations. Moreover, the lattice dynamics in HfAs2are investigated both with the Raman scattering and density functional theory. The phonon dispersion, density of states, lattice thermal conductivity, and the phonon lifetimes are computed to support the experimental findings. The softening of phonons, the broadening of Raman modes, and the reduction of phonon lifetimes with temperature suggest the enhancement of phonon anharmonicity in this new topological material, which is crucial for boosting the thermoelectric performance of topological semimetals.more » « less
An official website of the United States government

