skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Locally Resonant Effective Phononic Crystals for Subwavelength Vibration Control of Torsional Cylindrical Waves
Abstract Locally resonant materials allow for wave propagation control in the subwavelength regime. Even though these materials do not need periodicity, they are usually designed as periodic systems since this allows for the application of the Bloch theorem and analysis of the entire system based on a single unit cell. However, geometries that are invariant to translation result in equations of motion with periodic coefficients only if we assume plane wave propagation. When wave fronts are cylindrical or spherical, a system realized through tessellation of a unit cell does not result in periodic coefficients and the Bloch theorem cannot be applied. Therefore, most studies of periodic locally resonant systems are limited to plane wave propagation. In this article, we address this limitation by introducing a locally resonant effective phononic crystal composed of a radially varying matrix with attached torsional resonators. This material is not geometrically periodic but exhibits effective periodicity, i.e., its equations of motion are invariant to radial translations, allowing the Bloch theorem to be applied to radially propagating torsional waves. We show that this material can be analyzed under the already developed framework for metamaterials. To show the importance of using an effectively periodic system, we compare its behavior to a system that is not effectively periodic but has geometric periodicity. We show considerable differences in transmission as well as in the negative effective properties of these two systems. Locally resonant effective phononic crystals open possibilities for subwavelength elastic wave control in the near field of sources.  more » « less
Award ID(s):
2031110
PAR ID:
10353626
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Vibration and Acoustics
Volume:
144
Issue:
3
ISSN:
1048-9002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Propagation and attenuation of sound through a layered phononic crystal with viscous constituents is theoretically studied. The Navier–Stokes equation with appropriate boundary conditions is solved and the dispersion relation for sound is obtained for a periodic layered heterogeneous structure where at least one of the constituents is a viscous fluid. Simplified dispersion equations are obtained when the other component of the unit is either elastic solid, viscous fluid, or ideal fluid. The limit of low frequencies when periodic structure homogenizes and the frequencies close to the band edge when propagating Bloch wave becomes a standing wave are considered and enhanced viscous dissipation is calculated. Angular dependence of the attenuation coefficient is analyzed. It is shown that transition from dissipation in the bulk to dissipation in a narrow boundary layer occurs in the region of angles close to normal incidence. Enormously high dissipation is predicted for solid–fluid structure in the region of angles where transmission practically vanishes due to appearance of so-called “transmission zeros,” according to El Hassouani, El Boudouti, Djafari-Rouhani, and Aynaou [Phys. Rev. B 78, 174306 (2008)]. For the case when the unit cell contains a narrow layer of high viscosity fluid, the anomaly related to acoustic manifestation of Borrmann effect is explained. 
    more » « less
  2. null (Ed.)
    Many engineering applications leverage metamaterials to achieve elastic wave control. To enhance the performance and expand the functionalities of elastic waveguides, the concepts of electronic transport in topological insulators have been applied to elastic metamaterials. Initial studies showed that topologically protected elastic wave transmission in mechanical metamaterials could be realized that is immune to backscattering and undesired localization in the presence of defects or disorder. Recent studies have developed tunable topological elastic metamaterials to maximize performance in the presence of varying external conditions, adapt to changing operating requirements, and enable new functionalities such as a programmable wave path. However, a challenge remains to achieve a tunable topological metamaterial that is comprehensively adaptable in both the frequency and spatial domains and is effective over a broad frequency bandwidth that includes a subwavelength regime. To advance the state of the art, this research presents a piezoelectric metamaterial with the capability to concurrently tailor the frequency, path, and mode shape of topological waves using resonant circuitry. In the research presented in this manuscript, the plane wave expansion method is used to detect a frequency tunable subwavelength Dirac point in the band structure of the periodic unit cell and discover an operating region over which topological wave propagation can exist. Dispersion analyses for a finite strip illuminate how circuit parameters can be utilized to adjust mode shapes corresponding to topological edge states. A further evaluation provides insight into how increased electromechanical coupling and lattice reconfiguration can be exploited to enhance the frequency range for topological wave propagation, increase achievable mode localization, and attain additional edge states. Topological guided wave propagation that is subwavelength in nature and adaptive in path, localization, and frequency is illustrated in numerical simulations of thin plate structures. Outcomes from the presented work indicate that the easily integrable and comprehensively tunable proposed metamaterial could be employed in applications requiring a multitude of functions over a broad frequency bandwidth. 
    more » « less
  3. A spatially periodic structure of heterogeneous elastic rods that periodically oscillate along their axes is proposed as a time-modulated phononic crystal. Each rod is a bi-material cylinder, consisting of periodically distributed slices with significantly different elastic properties. The rods are imbedded in an elastic matrix. Using a plane wave expansion, it is shown that the dispersion equation for sound waves is obtained from the solutions of a quadratic eigenvalue problem over the eigenfrequency ω. The coefficients of the corresponding quadratic polynomial are represented by infinite matrices defined in the space spanned by the reciprocal lattice vectors, where elements depend on the velocity of translation motion of the rods and Bloch vector k. The calculated band structure exhibits both ω and k bandgaps. If a frequency gap overlaps with a momentum gap, a mixed gap is formed. Within a mixed gap, ω and k acquire imaginary parts. A method of analysis of the dispersion equation in complex ω−k space is proposed. As a result of the high elastic contrast between the materials in the bi-material rods, a substantial depth of modulation is achieved, leading to a large gap to midgap ratio for the frequency, momentum, and mixed bandgaps. 
    more » « less
  4. Locally resonant elastodynamic metasurfaces for suppressing surface waves have gained popularity in recent years, especially because of their potential in low-frequency applications such as seismic barriers. Their design strategy typically involves tailoring geometrical features of local resonators to attain a desired frequency bandgap through extensive dispersion analyses. In this paper, a systematic design methodology is presented to conceive these local resonators using topology optimization, where frequency bandgaps develop by matching multiple antiresonances with predefined target frequencies. The design approach modifies an individual resonator's response to unidirectional harmonic excitations in the in-plane and out-of-plane directions, mimicking the elliptical motion of surface waves. Once an arrangement of optimized resonators composes a locally resonant metasurface, frequency bandgaps appear around the designed antiresonance frequencies. Numerical investigations analyze three case studies, showing that longitudinal-like and flexural-like antiresonances lead to nonoverlapping bandgaps unless both antiresonance modes are combined to generate a single and wider bandgap. Experimental data demonstrate good agreement with the numerical results, validating the proposed design methodology as an effective tool to realize locally resonant metasurfaces by matching multiple antiresonances such that bandgaps generated as a result of in-plane and out-of-plane surface wave motion combine into wider bandgaps. 
    more » « less
  5. Resonant periodic nanostructures provide perfect reflection across small or large spectral bandwidths depending on the choice of materials and design parameters. This effect has been known for decades, observed theoretically and experimentally via one-dimensional and two-dimensional structures commonly known as resonant gratings, metamaterials, and metasurfaces. The physical cause of this extraordinary phenomenon is guided-mode resonance mediated by lateral Bloch modes excited by evanescent diffraction orders in the subwavelength regime. In recent years, hundreds of papers have declared Fabry-Perot or Mie resonance to be the basis of the perfect reflection possessed by periodic metasurfaces. Treating a simple one-dimensional cylindrical-rod lattice, here we show clearly and unambiguously that Mie resonance does not cause perfect reflection. In fact, the spectral placement of the Bloch-mode-mediated zero-order reflectance is primarily controlled by the lattice period by way of its direct effect on the homogenized effective-medium refractive index of the lattice. In general, perfect reflection appears away from Mie resonance. However, when the lateral leaky-mode field profiles approach the isolated-particle Mie field profiles, the resonance locus tends towards the Mie resonance wavelength. The fact that the lattice fields“remember” the isolated particle fields is referred here as“Mie modal memory.” On erasure of the Mie memory by an index-matched sublayer, we show that perfect reflection survives with the resonance locus approaching the homogenized effective-medium waveguide locus. The results presented here will aid in clarifying the physical basis of general resonant photonic lattices. 
    more » « less