Holographic displays promise to deliver unprecedented display capabilities in augmented reality applications, featuring a wide field of view, wide color gamut, spatial resolution, and depth cues all in a compact form factor. While emerging holographic display approaches have been successful in achieving large étendue and high image quality as seen by a camera, the large étendue also reveals a problem that makes existing displays impractical: the sampling of the holographic field by the eye pupil. Existing methods have not investigated this issue due to the lack of displays with large enough étendue, and, as such, they suffer from severe artifacts with varying eye pupil size and location. We show that the holographic field as sampled by the eye pupil is highly varying for existing display setups, and we propose pupil-aware holography that maximizes the perceptual image quality irrespective of the size, location, and orientation of the eye pupil in a near-eye holographic display. We validate the proposed approach both in simulations and on a prototype holographic display and show that our method eliminates severe artifacts and significantly outperforms existing approaches.
more »
« less
Speckle-free holography with partially coherent light sources and camera-in-the-loop calibration
Computer-generated holography (CGH) holds transformative potential for a wide range of applications, including direct-view, virtual and augmented reality, and automotive display systems. While research on holographic displays has recently made impressive progress, image quality and eye safety of holographic displays are fundamentally limited by the speckle introduced by coherent light sources. Here, we develop an approach to CGH using partially coherent sources. For this purpose, we devise a wave propagation model for partially coherent light that is demonstrated in conjunction with a camera-in-the-loop calibration strategy. We evaluate this algorithm using light-emitting diodes (LEDs) and superluminescent LEDs (SLEDs) and demonstrate improved speckle characteristics of the resulting holograms compared with coherent lasers. SLEDs in particular are demonstrated to be promising light sources for holographic display applications, because of their potential to generate sharp and high-contrast two-dimensional (2D) and 3D images that are bright, eye safe, and almost free of speckle.
more »
« less
- Award ID(s):
- 1839974
- PAR ID:
- 10353641
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 7
- Issue:
- 46
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Computer-generated holography (CGH) simulates the propagation and interference of complex light waves, allowing it to reconstruct realistic images captured from a specific viewpoint by solving the corresponding Maxwell equations. However, in applications such as virtual and augmented reality, viewers should freely observe holograms from arbitrary viewpoints, much as how we naturally see the physical world. In this work, we train a neural network to generate holograms at any view in a scene. Our result is the Neural Holographic Field: the first artificial-neural-network-based representation for light wave propagation in free space and transform sparse 2D photos into holograms that are not only 3D but also freely viewable from any perspective. We demonstrate by visualizing various smartphone-captured scenes from arbitrary six-degree-of-freedom viewpoints on a prototype holographic display. To this end, we encode the measured light intensity from photos into a neural network representation of underlying wavefields. Our method implicitly learns the amplitude and phase surrogates of the underlying incoherent light waves under coherent light display conditions. During playback, the learned model predicts the underlying continuous complex wavefront propagating to arbitrary views to generate holograms.more » « less
-
Abstract Emissive displays based on light‐emitting diodes (LEDs), with high pixel density, luminance, efficiency, and large color gamut, are of great interest for applications such as watches, phones, and virtual displays. The high pixel density requirements of some emissive displays require a particular class of LEDs that are sub‐20‐micrometers in length, called micro‐LEDs. While state‐of‐the‐art emissive displays incorporate organic LEDs, an alternative is inorganic III‐nitride LEDs with potential reliability and efficiency benefits. Here we explore the performance, challenges, and prospective outcomes for III‐nitride micro‐LEDs to produce efficient emissive displays and provide insight to advance this technology. Calculations are performed to determine the operating points for the micro‐LEDs and the efficiency of the overall emissive display. It is shown that III‐nitride micro‐LEDs suffer from some of the same problems as their larger‐sized solid‐state lighting LED cousins; however, the operating conditions of micro‐LEDs can result in different challenges and research efforts. These challenges include improving efficiency at low current densities; improving the efficiency of longer wavelength (green and red) LEDs; and creating device designs that can overcome low coupling efficiency, high surface recombination, and display assembly difficulties.more » « less
-
The Visual Turing Test is the ultimate goal to evaluate the realism of holographic displays. Previous studies have focused on addressing challenges such as limited e ́tendue and image quality over a large focal volume, but they have not investigated the effect of pupil sampling on the viewing experience in full 3D holograms. In this work, we tackle this problem with a novel hologram generation algorithm motivated by matching the projection operators of incoherent (Light Field) and coherent (Wigner Function) light transport. To this end, we supervise hologram computation using synthesized photographs, which are rendered on-the-fly using Light Field refocusing from stochastically sampled pupil states during optimization. The proposed method produces holograms with correct parallax and focus cues, which are important for passing the Visual Turing Test. We validate that our approach compares favorably to state-of-the-art CGH algorithms that use Light Field and Focal Stack supervision. Our experiments demonstrate that our algorithm improves the viewing experience when evaluated under a large variety of different pupil states.more » « less
-
Holographic near-eye displays promise unprecedented capabilities for virtual and augmented reality (VR/AR) systems. The image quality achieved by current holographic displays, however, is limited by the wave propagation models used to simulate the physical optics. We propose a neural network-parameterized plane-to-multiplane wave propagation model that closes the gap between physics and simulation. Our model is automatically trained using camera feedback and it outperforms related techniques in 2D plane-to-plane settings by a large margin. Moreover, it is the first network-parameterized model to naturally extend to 3D settings, enabling high-quality 3D computer-generated holography using a novel phase regularization strategy of the complex-valued wave field. The efficacy of our approach is demonstrated through extensive experimental evaluation with both VR and optical see-through AR display prototypes.more » « less
An official website of the United States government

