Abstract A search for low-mass dilepton resonances in Higgs boson decays is conducted in the four-lepton final state. The decay is assumed to proceed via a pair of beyond the standard model particles, or one such particle and a $${\mathrm{Z}}$$ Z boson. The search uses proton–proton collision data collected with the CMS detector at the CERN LHC, corresponding to an integrated luminosity of 137 $$\,\text {fb}^{-1}$$ fb - 1 , at a center-of-mass energy $$\sqrt{s} = 13\,\text {TeV} $$ s = 13 TeV . No significant deviation from the standard model expectation is observed. Upper limits at 95% confidence level are set on model-independent Higgs boson decay branching fractions. Additionally, limits on dark photon and axion-like particle production, based on two specific models, are reported. 
                        more » 
                        « less   
                    
                            
                            Unveiling hidden physics at the LHC
                        
                    
    
            Abstract The field of particle physics is at the crossroads. The discovery of a Higgs-like boson completed the Standard Model (SM), but the lacking observation of convincing resonances Beyond the SM (BSM) offers no guidance for the future of particle physics. On the other hand, the motivation for New Physics has not diminished and is, in fact, reinforced by several striking anomalous results in many experiments. Here we summarise the status of the most significant anomalies, including the most recent results for the flavour anomalies, the multi-lepton anomalies at the LHC, the Higgs-like excess at around 96 GeV, and anomalies in neutrino physics, astrophysics, cosmology, and cosmic rays. While the LHC promises up to 4 $$\hbox {ab}^{-1}$$ ab - 1 of integrated luminosity and far-reaching physics programmes to unveil BSM physics, we consider the possibility that the latter could be tested with present data, but that systemic shortcomings of the experiments and their search strategies may preclude their discovery for several reasons, including: final states consisting in soft particles only, associated production processes, QCD-like final states, close-by SM resonances, and SUSY scenarios where no missing energy is produced. New search strategies could help to unveil the hidden BSM signatures, devised by making use of the CERN open data as a new testing ground. We discuss the CERN open data with its policies, challenges, and potential usefulness for the community. We showcase the example of the CMS collaboration, which is the only collaboration regularly releasing some of its data. We find it important to stress that individuals using public data for their own research does not imply competition with experimental efforts, but rather provides unique opportunities to give guidance for further BSM searches by the collaborations. Wide access to open data is paramount to fully exploit the LHCs potential. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10353722
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- The European Physical Journal C
- Volume:
- 82
- Issue:
- 8
- ISSN:
- 1434-6052
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            A<sc>bstract</sc> We develop the idea that the unprecedented precision in Standard Model (SM) measurements, with further improvement at the HL-LHC, enables new searches for physics Beyond the Standard Model (BSM). As an illustration, we demonstrate that the measured kinematic distributions of theℓ+ Image missing<#comment/>final state not only determine the mass of theWboson, but are also sensitive to light new physics. Such a search for new physics thus requires asimultaneousfit to the BSM and SM parameters, “unifying” searches and measurements at the LHC and Tevatron. In this paper, we complete the program initiated in our earlier work [1]. In particular, we analyze (i) novel decay modes of theWboson with a neutrinophilic invisible scalar or with a heavy neutrino; (ii) modified production ofWbosons, namely, associated with a hadrophilic invisibleZ′ gauge boson; and (iii) scenarios without an on-shellWboson, such as slepton-sneutrino production in the Minimal Supersymmetric Standard Model (MSSM). Here, we complement our previous MSSM analysis in [1] by considering a different kinematic region. Our results highlight that new physics can still be directly discovered at the LHC, including light new physics, via SM precision measurements. Furthermore, we illustrate that such BSM signals are subtle, yet potentially large enough to affect the precision measurements of SM parameters themselves, such as theWboson mass.more » « less
- 
            Abstract The production of heavy neutral mass resonances, $$\text {Z}^{\prime }$$ Z ′ , has been widely studied theoretically and experimentally. Although the nature, mass, couplings, and associated quantum numbers of this hypothetical particle are yet to be determined, current LHC experimental results have set strong constraints assuming the simplest beyond Standard Model (SM) hypotheses. We present a new feasibility study on the production of a $$\text {Z}^{\prime }$$ Z ′ boson at the LHC, with family non-universal couplings, considering proton–proton collisions at $$\sqrt{s} = 13$$ s = 13 and 14 TeV. Such a hypothesis is well motivated theoretically and it can explain observed differences between SM predictions and experimental results, as well as being a useful tool to further probe recent results in searches for new physics considering non-universal fermion couplings. We work under two simplified phenomenological frameworks where the $$\textrm{Z}^{\prime }$$ Z ′ masses and couplings to the SM particles are free parameters, and consider final states of the $$\text {Z}^{\prime }$$ Z ′ decaying to a pair of $$\textrm{b}$$ b quarks. The analysis is performed using machine learning techniques to maximize the sensitivity. Despite being a well motivated physics case in its own merit, such scenarios have not been fully considered in ongoing searches at the LHC. We note the proposed search methodology can be a key mode for discovery over a large mass range, including low masses, traditionally considered difficult due to experimental constrains. In addition, the proposed search is complementary to existing strategies.more » « less
- 
            Abstract High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF’s physics potential.more » « less
- 
            A bstract A search for physics beyond the standard model (SM) in final states with an electron or muon and missing transverse momentum is presented. The analysis uses data from proton-proton collisions at a centre-of-mass energy of 13 TeV, collected with the CMS detector at the LHC in 2016–2018 and corresponding to an integrated luminosity of 138 fb − 1 . No significant deviation from the SM prediction is observed. Model-independent limits are set on the production cross section of W’ bosons decaying into lepton-plus-neutrino final states. Within the framework of the sequential standard model, with the combined results from the electron and muon decay channels a W’ boson with mass less than 5.7 TeV is excluded at 95% confidence level. Results on a SM precision test, the determination of the oblique electroweak W parameter, are presented using LHC data for the first time. These results together with those from the direct W’ resonance search are used to extend existing constraints on composite Higgs scenarios. This is the first experimental exclusion on compositeness parameters using results from LHC data other than Higgs boson measurements.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    