skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DENOUNCER: detection of unfairness in classifiers
The use of automated data-driven tools for decision-making has gained popularity in recent years. At the same time, the reported cases of algorithmic bias and discrimination increase as well, which in turn lead to an extensive study of algorithmic fairness. Numerous notions of fairness have been proposed, designed to capture different scenarios. These measures typically refer to a "protected group" in the data, defined using values of some sensitive attributes. Confirming whether a fairness definition holds for a given group is a simple task, but detecting groups that are treated unfairly by the algorithm may be computationally prohibitive as the number of possible groups is combinatorial. We present a method for detecting such groups efficiently for various fairness definitions. Our solution is implemented in a system called DENOUNCER, an interactive system that allows users to explore different fairness measures of a (trained) classifier for a given test data. We propose to demonstrate the usefulness of DENOUNCER using real-life data and illustrate the effectiveness of our method.  more » « less
Award ID(s):
1741022 1934565 2106176
PAR ID:
10353854
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the VLDB Endowment
Volume:
14
Issue:
12
ISSN:
2150-8097
Page Range / eLocation ID:
2719 to 2722
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Recently there has been a growing interest in fairness-aware recommender systems including fairness in providing consistent performance across different users or groups of users. A recommender system could be considered unfair if the recommendations do not fairly represent the tastes of a certain group of users while other groups receive recommendations that are consistent with their preferences. In this paper, we use a metric called miscalibration for measuring how a recommendation algorithm is responsive to users’ true preferences and we consider how various algorithms may result in different degrees of miscalibration for different users. In particular, we conjecture that popularity bias which is a well-known phenomenon in recommendation is one important factor leading to miscalibration in recommendation. Our experimental results using two real-world datasets show that there is a connection between how different user groups are affected by algorithmic popularity bias and their level of interest in popular items. Moreover, we show that the more a group is affected by the algorithmic popularity bias, the more their recommendations are miscalibrated. 
    more » « less
  2. Welfare measures overall utility across a population, whereas malfare measures overall disutility, and the social planner’s problem can be cast either as maximizing the former or minimizing the latter. We show novel bounds on the expectations and tail probabilities of estimators of welfare, malfare, and regret of per-group (dis)utility values, where estimates are made from a finite sample drawn from each group. In particular, we consider estimating these quantities for individual functions (e.g., allocations or classifiers) with standard probabilistic bounds, and optimizing and bounding generalization error over hypothesis classes (i.e., we quantify overfitting) using Rademacher averages. We then study algorithmic fairness through the lens of sample complexity, finding that because marginalized or minority groups are often understudied, and fewer data are therefore available, the social planner is more likely to overfit to these groups, thus even models that seem fair in training can be systematically biased against such groups. We argue that this effect can be mitigated by ensuring sufficient sample sizes for each group, and our sample complexity analysis characterizes these sample sizes. Motivated by these conclusions, we present progressive sampling algorithms to efficiently optimize various fairness objectives. 
    more » « less
  3. Leading approaches to algorithmic fairness and policy-induced distribution shift are often misaligned with long-term objectives in sequential settings. We aim to correct these shortcomings by ensuring that both the objective and fairness constraints account for policy-induced distribution shift. First, we motivate this problem using an example in which individuals subject to algorithmic predictions modulate their willingness to participate with the policy maker. Fairness in this example is measured by the variance of group participation rates. Next, we develop a method for solving the resulting constrained, non-linear optimization problem and prove that this method converges to a fair, locally optimal policy given first-order information. Finally, we experimentally validate our claims in a semi-synthetic setting. 
    more » « less
  4. Fair consensus building combines the preferences of multiple rankers into a single consensus ranking, while ensuring any group defined by a protected attribute (such as race or gender) is not disadvantaged compared to other groups. Manually generating a fair consensus ranking is time-consuming and impractical- even for a fairly small number of candidates. While algorithmic approaches for auditing and generating fair consensus rankings have been developed, these have not been operationalized in interactive systems. To bridge this gap, we introduce FairFuse, a visualization system for generating, analyzing, and auditing fair consensus rankings. We construct a data model which includes base rankings entered by rankers, augmented with measures of group fairness, and algorithms for generating consensus rankings with varying degrees of fairness. We design novel visualizations that encode these measures in a parallel-coordinates style rank visualization, with interactions for generating and exploring fair consensus rankings. We describe use cases in which FairFuse supports a decision-maker in ranking scenarios in which fairness is important, and discuss emerging challenges for future efforts supporting fairness-oriented rank analysis. Code and demo videos available at https://osf.io/hd639/. 
    more » « less
  5. Leading approaches to algorithmic fairness and policy-induced distribution shift are often misaligned with long-term objectives in sequential settings. We aim to correct these shortcomings by ensuring that both the objective and fairness constraints account for policy-induced distribution shift. First, we motivate this problem using an example in which individuals subject to algorithmic predictions modulate their willingness to participate with the policy maker. Fairness in this example is measured by the variance of group participation rates. Next, we develop a method for solving the resulting constrained, non-linear optimization problem and prove that this method converges to a fair, locally optimal policy given first-order information. Finally, we experimentally validate our claims in a semi-synthetic setting. 
    more » « less