skip to main content


Title: Tracking calcium dynamics from individual neurons in behaving animals
Measuring the activity of neuronal populations with calcium imaging can capture emergent functional properties of neuronal circuits with single cell resolution. However, the motion of freely behaving animals, together with the intermittent detectability of calcium sensors, can hinder automatic monitoring of neuronal activity and their subsequent functional characterization. We report the development and open-source implementation of a multi-step cellular tracking algorithm (Elastic Motion Correction and Concatenation or EMC 2 ) that compensates for the intermittent disappearance of moving neurons by integrating local deformation information from detectable neurons. We demonstrate the accuracy and versatility of our algorithm using calcium imaging data from two-photon volumetric microscopy in visual cortex of awake mice, and from confocal microscopy in behaving Hydra , which experiences major body deformation during its contractions. We quantify the performance of our algorithm using ground truth manual tracking of neurons, along with synthetic time-lapse sequences, covering a wide range of particle motions and detectability parameters. As a demonstration of the utility of the algorithm, we monitor for several days calcium activity of the same neurons in layer 2/3 of mouse visual cortex in vivo , finding significant turnover within the active neurons across days, with only few neurons that remained active across days. Also, combining automatic tracking of single neuron activity with statistical clustering, we characterize and map neuronal ensembles in behaving Hydra , finding three major non-overlapping ensembles of neurons (CB, RP1 and RP2) whose activity correlates with contractions and elongations. Our results show that the EMC 2 algorithm can be used as a robust and versatile platform for neuronal tracking in behaving animals.  more » « less
Award ID(s):
1822550
NSF-PAR ID:
10353869
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Gutkin, Boris S.
Date Published:
Journal Name:
PLOS Computational Biology
Volume:
17
Issue:
10
ISSN:
1553-7358
Page Range / eLocation ID:
e1009432
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The neural code relates the activity of the nervous system to the activity of the muscles to the generation of behavior. To decipher it, it would be ideal to comprehensively measure the activity of the entire nervous system and musculature in a behaving animal. As a step in this direction, we used the cnidarian Hydra vulgaris to explore how physiological and environmental conditions alter simple contractile behavior and its accompanying neural and muscle activity. We used whole-body calcium imaging of neurons and muscle cells and studied the effect of temperature, media osmolarity, nutritional state, and body size on contractile behavior. In mounted Hydra preparations, changes in temperature, nutrition state, or body size did not have a major effect on neural or muscle activity, or on contractile behavior. But changes in media osmolarity systematically altered contractile behavior and foot detachments, increasing their frequency in hypo-osmolar media solutions and decreasing it in hyperosmolar media. Similar effects were seen in ectodermal, but not in endodermal muscle. Osmolarity also bidirectionally changed the activity of contraction burst (CB) neurons, but did not affect the network of rhythmic potential (RP) neurons in the ectoderm. These findings show osmolarity-dependent changes in the activity of CB neurons and ectodermal muscle, consistent with the hypothesis that CB neurons respond to media hypo-osmolarity, activating ectodermal muscle to generate CBs. This dedicated reflex could serve as an excretory system to prevent osmotic injury. This work demonstrates the feasibility of studying an entire neuronal and muscle activity in a behaving animal. 
    more » « less
  2. Abstract

    The ability to record every spike from every neuron in a behaving animal is one of the holy grails of neuroscience. Here, we report coming one step closer towards this goal with the development of an end-to-end pipeline that automatically tracks and extracts calcium signals from individual neurons in the cnidarianHydra vulgaris. We imaged dually labeled (nuclear tdTomato and cytoplasmic GCaMP7s) transgenicHydraand developed an open-source Python platform (TraSE-IN) for the Tracking and Spike Estimation of Individual Neurons in the animal during behavior. The TraSE-IN platform comprises a series of modules that segments and tracks each nucleus over time and extracts the corresponding calcium activity in the GCaMP channel. Another series of signal processing modules allows robust prediction of individual spikes from each neuron’s calcium signal. This complete pipeline will facilitate the automatic generation and analysis of large-scale datasets of single-cell resolution neural activity inHydra, and potentially other model organisms, paving the way towards deciphering the neural code of an entire animal.

     
    more » « less
  3. Abstract

    Neuronal ensembles are groups of neurons with correlated activity associated with sensory, motor, and behavioral functions. To explore how ensembles encode information, we investigated responses of visual cortical neurons in awake mice using volumetric two-photon calcium imaging during visual stimulation. We identified neuronal ensembles employing an unsupervised model-free algorithm and, besides neurons activated by the visual stimulus (termed “onsemble”), we also find neurons that are specifically inactivated (termed “offsemble”). Offsemble neurons showed faster calcium decay during stimuli, suggesting selective inhibition. In response to visual stimuli, each ensemble (onsemble+offsemble) exhibited small trial-to-trial variability, high orientation selectivity, and superior predictive accuracy for visual stimulus orientation, surpassing the sum of individual neuron activity. Thus, the combined selective activation and inactivation of cortical neurons enhances visual encoding as an emergent and distributed neural code.

     
    more » « less
  4. Abstract

    Multiphoton microscopy has emerged as the primary imaging tool for studying the structural and functional dynamics of neural circuits in brain tissue, which is highly scattering to light. Recently, three-photon microscopy has enabled high-resolution fluorescence imaging of neurons in deeper brain areas that lie beyond the reach of conventional two-photon microscopy, which is typically limited to ~ 450 µm. Three-photon imaging of neuronal calcium signals, through the genetically-encoded calcium indicator GCaMP6, has been used to successfully record neuronal activity in deeper neocortical layers and parts of the hippocampus in rodents. Bulk-loading cells in deeper cortical layers with synthetic calcium indicators could provide an alternative strategy for labelling that obviates dependence on viral tropism and promoter penetration, particularly in non-rodent species. Here we report a strategy for visualized injection of a calcium dye, Oregon Green BAPTA-1 AM (OGB-1 AM), at 500–600 µm below the surface of the mouse visual cortex in vivo. We demonstrate successful OGB-1 AM loading of cells in cortical layers 5–6 and subsequent three-photon imaging of orientation- and direction- selective visual responses from these cells.

     
    more » « less
  5. Abstract

    Objective. Intracortical microstimulation (ICMS) can be an effective method for restoring sensory perception in contemporary brain–machine interfaces. However, the mechanisms underlying better control of neuronal responses remain poorly understood, as well as the relationship between neuronal activity and other concomitant phenomena occurring around the stimulation site.Approach. Different microstimulation frequencies were investigatedin vivoon Thy1-GCaMP6s mice using widefield and two-photon imaging to evaluate the evoked excitatory neural responses across multiple spatial scales as well as the induced hemodynamic responses. Specifically, we quantified stimulation-induced neuronal activation and depression in the mouse visual cortex and measured hemodynamic oxyhemoglobin and deoxyhemoglobin signals using mesoscopic-scale widefield imaging.Main results. Our calcium imaging findings revealed a preference for lower-frequency stimulation in driving stronger neuronal activation. A depressive response following the neural activation preferred a slightly higher frequency stimulation compared to the activation. Hemodynamic signals exhibited a comparable spatial spread to neural calcium signals. Oxyhemoglobin concentration around the stimulation site remained elevated during the post-activation (depression) period. Somatic and neuropil calcium responses measured by two-photon microscopy showed similar dependence on stimulation parameters, although the magnitudes measured in soma was greater than in neuropil. Furthermore, higher-frequency stimulation induced a more pronounced activation in soma compared to neuropil, while depression was predominantly induced in soma irrespective of stimulation frequencies.Significance. These results suggest that the mechanism underlying depression differs from activation, requiring ample oxygen supply, and affecting neurons. Our findings provide a novel understanding of evoked excitatory neuronal activity induced by ICMS and offer insights into neuro-devices that utilize both activation and depression phenomena to achieve desired neural responses.

     
    more » « less