skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Neutrino mass from Affleck-Dine leptogenesis and WIMP dark matte
Affleck-Dine (AD) mechanism for leptogenesis involves the cosmological evolution of a complex scalar field (AD field) that carries non-zero lepton number. We show how explicit lepton number breaking terms, which involve the AD field needed to implement this scenario combined with fermionic WIMP dark matter, can generate neutrino mass at the one loop level, thus providing a unified framework for solving four major puzzles of the standard model i.e. inflation, baryogenesis, dark matter and neutrino mass. We discuss some phenomenological implications of this model.  more » « less
Award ID(s):
1914731
PAR ID:
10353993
Author(s) / Creator(s):
Date Published:
Journal Name:
The Journal of high energy physics
Volume:
2022, 92 (2022).
Issue:
92
ISSN:
1126-6708
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a unified theory of inflation, neutrino mass, baryogenesis, and dark matter where global lepton number symmetry and its breaking play a crucial role. The basic idea is to use a lepton number carrying a complex scalar field as the inflaton as well as the field that implements Affleck-Dine (AD) leptogenesis. Dark matter is the massive Majoron which is a pseudo-Goldstone boson, resulting from the spontaneous breaking of lepton number symmetry supplemented by explicit lepton number violation needed to implement AD leptogenesis. The magnitude of the resulting nB/s in the model is related to the mass of the pseudo-Goldstone dark matter, connecting two apparently disconnected cosmological observations. An inverse seesaw mechanism with lepton number breaking at low scale is crucial to prevent washout of the lepton asymmetry during the universe’s evolution. The model seems to provide an economical solution to several puzzles of the standard model of particle physics and cosmology in one stroke. 
    more » « less
  2. I introduce the consequences of neutrino mass and mixing in the dense environments of the early Universe and in astrophysical environments. Thermal and matter effects are reviewed in the context of a two-neutrino formalism, with methods of extension to multiple neutrinos. The observed large neutrino mixing angles place the strongest constraint on cosmological lepton (or neutrino) asymmetries, while new sterile neutrinos provide a wealth of possible new physics, including lepton asymmetry generation as well as candidates for dark matter. I also review cosmic microwave background and large-scale structure constraints on neutrino mass and energy density. Lastly, I review how X-ray astronomy has become a branch of neutrino physics in searches for keV-scale sterile neutrino dark matter radiative decay. 
    more » « less
  3. We study a lepton-flavored dark matter model and its signatures at a future muon collider. We focus on the less-explored regime of feeble dark matter interactions, which suppresses the dangerous lepton-flavor-violating processes, gives rise to dark matter freeze-in production, and leads to long-lived particle signatures at colliders. We find that the interplay of dark matter freeze-in and its mediator freeze-out gives rise to an upper bound of around TeV scales on the dark matter mass. The signatures of this model depend on the lifetime of the mediator and can range from generic prompt decays to more exotic long-lived particle signals. In the prompt region, we calculate the signal yield, study useful kinematics cuts, and report tolerable systematics that would allow for a 5 σ discovery. In the long-lived region, we calculate the number of charged tracks and displaced lepton signals of our model in different parts of the detector and uncover kinematic features that can be used for background rejection. We show that, unlike in hadron colliders, multiple production channels contribute significantly, which leads to sharply distinct kinematics for electroweakly charged long-lived particle signals. Ultimately, the collider signatures of this lepton-flavored dark matter model are common among models of electroweak-charged new physics, rendering this model a useful and broadly applicable benchmark model for future muon collider studies that can help inform work on detector design and studies of systematics. Published by the American Physical Society2024 
    more » « less
  4. A bstract We propose a baryogenenesis mechanism that uses a rotating condensate of a Peccei-Quinn (PQ) symmetry breaking field and the dimension-five operator that gives Majorana neutrino masses. The rotation induces charge asymmetries for the Higgs boson and for lepton chirality through sphaleron processes and Yukawa interactions. The dimension-five interaction transfers these asymmetries to the lepton asymmetry, which in turn is transferred into the baryon asymmetry through the electroweak sphaleron process. QCD axion dark matter can be simultaneously produced by dynamics of the same PQ field via kinetic misalignment or parametric resonance, favoring an axion decay constant f a ≲ 10 10 GeV, or by conventional misalignment and contributions from strings and domain walls with f a ∼ 10 11 GeV. The size of the baryon asymmetry is tied to the mass of the PQ field. In simple supersymmetric theories, it is independent of UV parameters and predicts the supersymmtry breaking mass scale to be $$ \mathcal{O} $$ O (10 − 10 4 ) TeV, depending on the masses of the neutrinos and whether the condensate is thermalized during a radiation or matter dominated era. The high supersymmetry breaking mass scale may be free from cosmological and flavor/CP problems. We also construct a theory where TeV scale supersymmetry is possible. Parametric resonance may give warm axions, and the radial component of the PQ field may give signals in rare kaon decays from mixing with the Higgs and in dark radiation. 
    more » « less
  5. Using a low-energy effective field theory approach, we study some properties of models with large extra dimensions, in which quarks and leptons have localized wave functions in the extra dimensions. We consider models with two types of gauge groups: (i) the Standard-Model gauge group, and (ii) the left-right symmetric gauge group. Our main focus is on the lepton sector of models with n=2 extra dimensions, in particular, neutrino masses and mixing. We analyze the requisite conditions that the models must satisfy to be in accord with data and present a solution for lepton wave functions in the extra dimensions that fulfils these conditions. As part of our work, we also present a new solution for quark wave function centers. Issues with flavor-changing neutral-current effects are assessed. Finally, we remark on baryogenesis and dark matter in these models. 
    more » « less