skip to main content


Title: Unified model for inflation, pseudo-Goldstone dark matter, neutrino mass, and baryogenesis
We present a unified theory of inflation, neutrino mass, baryogenesis, and dark matter where global lepton number symmetry and its breaking play a crucial role. The basic idea is to use a lepton number carrying a complex scalar field as the inflaton as well as the field that implements Affleck-Dine (AD) leptogenesis. Dark matter is the massive Majoron which is a pseudo-Goldstone boson, resulting from the spontaneous breaking of lepton number symmetry supplemented by explicit lepton number violation needed to implement AD leptogenesis. The magnitude of the resulting nB/s in the model is related to the mass of the pseudo-Goldstone dark matter, connecting two apparently disconnected cosmological observations. An inverse seesaw mechanism with lepton number breaking at low scale is crucial to prevent washout of the lepton asymmetry during the universe’s evolution. The model seems to provide an economical solution to several puzzles of the standard model of particle physics and cosmology in one stroke.  more » « less
Award ID(s):
1914731
NSF-PAR ID:
10353996
Author(s) / Creator(s):
Date Published:
Journal Name:
Physical Review
Volume:
D 105, 035024
Issue:
105
ISSN:
2027-5951
Page Range / eLocation ID:
035024
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Affleck-Dine (AD) mechanism for leptogenesis involves the cosmological evolution of a complex scalar field (AD field) that carries non-zero lepton number. We show how explicit lepton number breaking terms, which involve the AD field needed to implement this scenario combined with fermionic WIMP dark matter, can generate neutrino mass at the one loop level, thus providing a unified framework for solving four major puzzles of the standard model i.e. inflation, baryogenesis, dark matter and neutrino mass. We discuss some phenomenological implications of this model. 
    more » « less
  2. A bstract The standard model Higgs quartic coupling vanishes at (10 9 − 10 13 ) GeV. We study SU(2) L × SU(2) R × U(1) B−L theories that incorporate the Higgs Parity mechanism, where this becomes the scale of Left-Right symmetry breaking, v R . Furthermore, these theories solve the strong CP problem and predict three right-handed neutrinos. We introduce cosmologies where SU(2) R × U(1) B−L gauge interactions produce right-handed neutrinos via the freeze-out or freeze-in mechanisms. In both cases, we find the parameter space where the lightest right-handed neutrino is dark matter and the decay of a heavier one creates the baryon asymmetry of the universe via leptogenesis. A theory of flavor is constructed that naturally accounts for the lightness and stability of the right-handed neutrino dark matter, while maintaining sufficient baryon asymmetry. The dark matter abundance and successful natural leptogenesis require v R to be in the range (10 10 − 10 13 ) GeV for freeze-out, in remarkable agreement with the scale where the Higgs quartic coupling vanishes, whereas freeze-in requires v R ≳ 10 9 GeV. The allowed parameter space can be probed by the warmness of dark matter, precise determinations of the top quark mass and QCD coupling by future colliders and lattice computations, and measurement of the neutrino mass hierarchy. 
    more » « less
  3. A bstract We propose a baryogenenesis mechanism that uses a rotating condensate of a Peccei-Quinn (PQ) symmetry breaking field and the dimension-five operator that gives Majorana neutrino masses. The rotation induces charge asymmetries for the Higgs boson and for lepton chirality through sphaleron processes and Yukawa interactions. The dimension-five interaction transfers these asymmetries to the lepton asymmetry, which in turn is transferred into the baryon asymmetry through the electroweak sphaleron process. QCD axion dark matter can be simultaneously produced by dynamics of the same PQ field via kinetic misalignment or parametric resonance, favoring an axion decay constant f a ≲ 10 10 GeV, or by conventional misalignment and contributions from strings and domain walls with f a ∼ 10 11 GeV. The size of the baryon asymmetry is tied to the mass of the PQ field. In simple supersymmetric theories, it is independent of UV parameters and predicts the supersymmtry breaking mass scale to be $$ \mathcal{O} $$ O (10 − 10 4 ) TeV, depending on the masses of the neutrinos and whether the condensate is thermalized during a radiation or matter dominated era. The high supersymmetry breaking mass scale may be free from cosmological and flavor/CP problems. We also construct a theory where TeV scale supersymmetry is possible. Parametric resonance may give warm axions, and the radial component of the PQ field may give signals in rare kaon decays from mixing with the Higgs and in dark radiation. 
    more » « less
  4. A bstract We study a strongly interacting, fermionic fluid in the presence of an applied magnetic field using a holographic framework. At low temperatures, translation symmetry is spontaneously broken and the resulting phase is a striped Hall fluid. Due to the magnetic field, an electric field applied parallel to the stripes causes the stripes to slide, a phenomenon we coin “Hall sliding.” We also investigate the magneto-transport of the system in the presence of an explicit translation symmetry-breaking lattice which pins the stripes. Electrical properties are well represented by a hydrodynamical model, which gives us further insight into particle-like cyclotron and pseudo-Goldstone excitations we observe. The DC conductivities obey a novel semi-circle law, which we derive analytically in the translationally invariant ground state at low temperature. 
    more » « less
  5. The effective conjugation symmetry that arises in the rotating wave frame is the analogue of the charge conjugation symmetry in field theory. Breaking this effective conjugation symmetry leads to asymmetries between up-chirped and down-chirped excitation in quantum optical systems. We use semiclassical quantum optics theory to describe these processes and experimentally characterize the asymmetry in the optical response in chirped, two-color saturated absorption spectroscopy (SAS) in an atomic vapor cell. Doing so demonstrates a theoretical and phenomenological correspondence to the simplest model of leptogenesis, the process by which our universe purportedly went from equal amounts of matter and antimatter to its present matter excess. The understanding of the asymmetry as due to a broken discrete symmetry under chirp illuminates the underlying processes responsible for other chirp asymmetries previously noted in the literature.

     
    more » « less