skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Immuno-Biotechnology and Bioinformatics in Community Colleges
Immuno-biotechnology is one of the fastest growing areas in the field of biotechnology. Digital World Biology's Biotech-Careers.org database of biotechnology employers (6800) has nearly 700 organizations that are involved with immunology in some way. With the advent of next generation DNA sequencing, and other technologies, immuno-biotechnology has significantly increased the use of computing technologies to decipher the meaning of large datasets and predict interactions between immune receptors (antibodies / T-Cell receptors / MHC) and their targets. The use of new technologies like immune-profiling -where large numbers of immune receptors are sequenced en masse - and targeted cancer therapies - where researchers create, engineer, and grow modified T cells to attack tumors -are leading to job growth and demands for new skills and knowledge in biomanufacturing, quality systems, immuno-bioinformatics, and cancer biology. In response to these new demands, Shoreline Community College (Shoreline, WA) has begun developing an immuno-biotechnology certificate. Part of this certificate includes a five-week course (30 hours hands-on computer lab) on immuno-bioinformatics. The immuno-bioinformatics course includes exercises in immune profiling, vaccine development, and operating bioinformatics programs using a command line interface. In immune profiling, students explore T-cell receptor data-sets from early stage breast cancer samples using Adaptive Biotechnologies (Seattle, WA) immunoSEQ Analyzer public server to learn how T-cells differ between normal tissue, blood, and tumors. Next, they use the IEDB (Immune Epitope Database) in conjunction with Molecule World (Digital World Biology) to predict antigens from sequences and verify the results to learn the differences between continuous and discontinuous epitopes that are recognized by T-cell receptors and antibodies. Finally, to get hands-on experience with bioinformatics programs, students will use cloud computing (CyVerse) and IgBLAST (NCBI) to explore data from an immune profiling experiment.  more » « less
Award ID(s):
1700441
PAR ID:
10354014
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of biomolecular techniques
Volume:
30
ISSN:
1524-0215
Page Range / eLocation ID:
520-521
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Background Despite approval of immunotherapy for a wide range of cancers, the majority of patients fail to respond to immunotherapy or relapse following initial response. These failures may be attributed to immunosuppressive mechanisms co-opted by tumor cells. However, it is challenging to use conventional methods to systematically evaluate the potential of tumor intrinsic factors to act as immune regulators in patients with cancer. Methods To identify immunosuppressive mechanisms in non-responders to cancer immunotherapy in an unbiased manner, we performed genome-wide CRISPR immune screens and integrated our results with multi-omics clinical data to evaluate the role of tumor intrinsic factors in regulating two rate-limiting steps of cancer immunotherapy, namely, T cell tumor infiltration and T cell-mediated tumor killing. Results Our studies revealed two distinct types of immune resistance regulators and demonstrated their potential as therapeutic targets to improve the efficacy of immunotherapy. Among them, PRMT1 and RIPK1 were identified as a dual immune resistance regulator and a cytotoxicity resistance regulator, respectively. Although the magnitude varied between different types of immunotherapy, genetically targeting PRMT1 and RIPK1 sensitized tumors to T-cell killing and anti-PD-1/OX40 treatment. Interestingly, a RIPK1-specific inhibitor enhanced the antitumor activity of T cell-based and anti-OX40 therapy, despite limited impact on T cell tumor infiltration. Conclusions Collectively, the data provide a rich resource of novel targets for rational immuno-oncology combinations. 
    more » « less
  2. Abstract Immunotherapy has revolutionized cancer treatment with the advent of advanced cell engineering techniques aimed at targeted therapy with reduced systemic toxicity. However, understanding the underlying immune–cancer interactions require development of advanced three-dimensional (3D) models of human tissues. In this study, we fabricated 3D tumor models with increasing complexity to study the cytotoxic responses of CD8 + T cells, genetically engineered to express mucosal-associated invariant T (MAIT) cell receptors, towards MDA-MB-231 breast cancer cells. Homotypic MDA-MB-231 and heterotypic MDA-MB-231/human dermal fibroblast tumor spheroids were primed with precursor MAIT cell ligand 5-amino-6-D-ribitylaminouracil (5-ARU). Engineered T cells effectively eliminated tumors after a 3 d culture period, demonstrating that the engineered T cell receptor recognized major histocompatibility complex class I-related (MR1) protein expressing tumor cells in the presence of 5-ARU. Tumor cell killing efficiency of engineered T cells were also assessed by encapsulating these cells in fibrin, mimicking a tumor extracellular matrix microenvironment. Expression of proinflammatory cytokines such as interferon gamma, interleukin-13, CCL-3 indicated immune cell activation in all tumor models, post immunotherapy. Further, in corroborating the cytotoxic activity, we found that granzymes A and B were also upregulated, in homotypic as well as heterotypic tumors. Finally, a 3D bioprinted tumor model was employed to study the effect of localization of T cells with respect to tumors. T cells bioprinted proximal to the tumor had reduced invasion index and increased cytokine secretion, which indicated a paracrine mode of immune–cancer interaction. Development of 3D tumor-T cell platforms may enable studying the complex immune–cancer interactions and engineering MAIT cells for cell-based cancer immunotherapies. 
    more » « less
  3. Abstract The tumor microenvironment (TME) is an immensely complex ecosystem1,2. This complexity underlies difficulties in elucidating principles of spatial organization and using molecular profiling of the TME for clinical use3. Through statistical analysis of 96 spatial transcriptomic (ST-seq) datasets spanning twelve diverse tumor types, we found a conserved distribution of multicellular, transcriptionally covarying units termed ‘Spatial Groups’ (SGs). SGs were either dependent on a hierarchical local spatial context – enriched for cell-extrinsic processes such as immune regulation and signal transduction – or independent from local spatial context – enriched for cell-intrinsic processes such as protein and RNA metabolism, DNA repair, and cell cycle regulation. We used SGs to define a measure of gene spatial heterogeneity – ‘spatial lability’ – and categorized all 96 tumors by their TME spatial lability profiles. The resulting classification captured spatial variation in cell-extrinsic versus cell-intrinsic biology and motivated class-specific strategies for therapeutic intervention. Using this classification to characterize pre-treatment biopsy samples of 16 non-small cell lung cancer (NSCLC) patients outside our database distinguished responders and non-responders to immune checkpoint blockade while programmed death-ligand 1 (PD-L1) status and spatially unaware bulk transcriptional markers did not. Our findings show conserved principles of TME spatial biology that are both biologically and clinically significant. 
    more » « less
  4. Abstract Heat shock factor 1 (HSF1) is a stress-responsive transcription factor that promotes cancer cell malignancy. To provide a better understanding of the biological processes regulated by HSF1, here we developed an HSF1 activity signature (HAS) and found that it was negatively associated with antitumor immune cells in breast tumors. Knockdown of HSF1 decreased breast tumor size and caused an influx of several antitumor immune cells, most notably CD8+ T cells. Depletion of CD8+ T cells rescued the reduction in growth of HSF1-deficient tumors, suggesting HSF1 prevents CD8+ T-cell influx to avoid immune-mediated tumor killing. HSF1 suppressed expression of CCL5, a chemokine for CD8+ T cells, and upregulation of CCL5 upon HSF1 loss significantly contributed to the recruitment of CD8+ T cells. These findings indicate that HSF1 suppresses antitumor immune activity by reducing CCL5 to limit CD8+ T-cell homing to breast tumors and prevent immune-mediated destruction, which has implications for the lack of success of immune modulatory therapies in breast cancer. Significance:The stress-responsive transcription factor HSF1 reduces CD8+ T-cell infiltration in breast tumors to prevent immune-mediated killing, indicating that cellular stress responses affect tumor-immune interactions and that targeting HSF1 could improve immunotherapies. 
    more » « less
  5. NA (Ed.)
    Programmed death-ligand 1 (PD-L1) drives inhibition of antigen-specific T cell responses through engage- ment of its receptor programmed death-1 (PD-1) on activated T cells. Overexpression of these immune checkpoint proteins in the tumor microenvironment has motivated the design of targeted antibodies that disrupt this interaction. Despite clinical success of these antibodies, response rates remain low, necessi- tating novel approaches to enhance performance. Here, we report the development of antibody fusion pro- teins that block immune checkpoint pathways through a distinct mechanism targeting molecular trafficking. By engaging multiple receptor epitopes on PD-L1, our engineered multiparatopic antibodies induce rapid clustering, internalization, and degradation in an epitope- and topology-dependent manner. The comple- mentary mechanisms of ligand blockade and receptor downregulation led to more durable immune cell acti- vation and dramatically reduced PD-L1 availability in mouse tumors. Collectively, these multiparatopic anti- bodies offer mechanistic insight into immune checkpoint protein trafficking and how it may be manipulated to reprogram immune outcomes. 
    more » « less