Abstract The lungs of squamate reptiles (lizards and snakes) are highly diverse, exhibiting single chambers, multiple chambers, transitional forms with two to three chambers, along with a suite of other anatomical features, including finger-like epithelial projections into the body cavity known as diverticulae. During embryonic development of the simple, sac-like lungs of anoles, the epithelium is pushed through the openings of a pulmonary smooth muscle mesh by the forces of luminal fluid pressure. This process of stress ball morphogenesis generates the faveolar epithelium typical of squamate lungs. Here, we compared embryonic lung development in brown anoles, leopard geckos, and veiled chameleons to determine if stress ball morphogenesis is conserved across squamates and to understand the physical processes that generate transitional-chambered lungs with diverticulae. We found that epithelial protrusion through the holes in a pulmonary smooth muscle mesh is conserved across squamates. Surprisingly, however, we found that luminal inflation is not conserved. Instead, leopard geckos and veiled chameleons appear to generate their faveolae via epithelial folding downstream of epithelial proliferation. We also found experimental and computational evidence suggesting that the transitional chambers and diverticulae of veiled chameleon lungs develop via apical constriction, a process known to be crucial for airway branching in the bird lung. Thus, distinct morphogenetic mechanisms generate epithelial diversity in squamate lungs, which may underpin their species-specific physiological and ecological adaptations.
more »
« less
Developmental basis of evolutionary lung loss in plethodontid salamanders
Plethodontid salamanders form incipient lungs as embryos despite the loss of lungs in adults millions of years ago.
more »
« less
- Award ID(s):
- 1702263
- PAR ID:
- 10354076
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 8
- Issue:
- 33
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Spiders are unique in having a dual respiratory system with book lungs and tracheae, and most araneomorph spiders breathe simultaneously via book lungs and tracheae, or tracheae alone. The respiratory organs of spiders are diverse but relatively conserved within families. The small araneoid spiders of the symphytognathoid clade exhibit a remarkably high diversity of respiratory organs and arrangements, unparalleled by any other group of ecribellate orb weavers. In the present study, we explore and review the diversity of symphytognathoid respiratory organs. Using a phylogenetic comparative approach, we reconstruct the evolution of the respiratory system of symphytognathoids based on the most comprehensive phylogenetic frameworks to date. There are no less than 22 different respiratory system configurations in symphytognathoids. The phylogenetic reconstructions suggest that the anterior tracheal system evolved from fully developed book lungs and, conversely, reduced book lungs have originated independently at least twice from its homologous tracheal conformation. Our hypothesis suggests that structurally similar book lungs might have originated through different processes of tracheal transformation in different families. In symphytognathoids, the posterior tracheal system has either evolved into a highly branched and complex system or it is completely lost. No evident morphological or behavioral features satisfactorily explains the exceptional variation of the symphytognathoid respiratory organs.more » « less
-
We assessed lung tissue mitochondrial bioenergetics in rats with tolerance (H-T) or susceptibility (H-S) to hyperoxia-induced ARDS. Results from studies in isolated mitochondria, tissue homogenate, and isolated perfused lungs show that mitochondrial bioenergetics are differentially altered in H-T and H-S lungs suggesting a potential role for mitochondrial bioenergetics in hyperoxia-induced ARDS. Results are clinically relevant since hyperoxia exposure is a primary therapy for patients with ARDS, and differential sensitivity to hyperoxia surely occurs in humans.more » « less
-
Two new biomechanical challenges faced cetacean lungs compared to their terrestrial ancestors. First, hydrostatic pressures encountered during deep dives are sufficient to cause nearly full lung collapse, risking substantial barotrauma during surfacing if air is trapped in the fragile smaller airways. Second, rapid ventilation in large cetaceans requires correspondingly high ventilatory flow rates. In order to investigate how airway geometry evolved in response to these challenges, we characterized airway geometry from 12 species of cetaceans that vary in common dive depth and ventilatory behavior and a domestic pig using computed tomography. After segmenting the major airways, we generated centerline networks models for the larger airways and computed geometric parameters for each tree including mean branching angle, percent volume fraction, and Strahler branching, diameter, and length ratios. When airway geometry was regressed against ventilatory and diving parameters with phylogenetic least squares, neither average branching angle, percent volume fraction, Strahler length ratio or Strahler branching ratio significantly varied with common ventilatory mode or common diving depth. Higher Strahler diameter ratios were associated with slower ventilation and deeper diving depth, suggesting that cetacean lungs have responded to biomechanical pressures primarily with changes in airway diameter. High Strahler diameter ratios lungs in deeper diving species may help to facilitate more complete collapse of the delicate terminal airways by providing for a greater incompressible volume for air storage at depth. On the other hand, lungs with low Strahler diameter ratios would be better for fast ventilation because the gradual decrease in diameter moving distally should keep peripheral flow resistance low, maximizing ventilatory flow rates.more » « less
-
Targeted delivery of nucleic acid therapeutics to the lungs could transform treatment options for pulmonary disease. We have previously developed oligomeric charge-altering releasable transporters (CARTs) for in vivo mRNA transfection and demonstrated their efficacy for use in mRNA-based cancer vaccination and local immunomodulatory therapies against murine tumors. While our previously reported glycine-based CART-mRNA complexes (G-CARTs/mRNA) show selective protein expression in the spleen (mouse, >99%), here, we report a new lysine-derived CART-mRNA complex (K-CART/mRNA) that, without additives or targeting ligands, shows selective protein expression in the lungs (mouse, >90%) following systemic IV administration. We further show that by delivering siRNA using the K-CART, we can significantly decrease expression of a lung-localized reporter protein. Blood chemistry and organ pathology studies demonstrate that K-CARTs are safe and well-tolerated. We report on the new step economical, organocatalytic synthesis (two steps) of functionalized polyesters and oligo-carbonate-co-α- aminoester K-CARTs from simple amino acid and lipid-based monomers. The ability to direct protein expression selectively in the spleen or lungs by simple, modular changes to the CART structure opens fundamentally new opportunities in research and gene therapy.more » « less
An official website of the United States government

