skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Model and data reduction for data assimilation: Particle filters employing projected forecasts and data with application to a shallow water model
Award ID(s):
1722578 1714195
PAR ID:
10354190
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Computers & Mathematics with Applications
Volume:
116
Issue:
C
ISSN:
0898-1221
Page Range / eLocation ID:
194 to 211
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Alber, Mark (Ed.)
    Biological systems exhibit complex dynamics that differential equations can often adeptly represent. Ordinary differential equation models are widespread; until recently their construction has required extensive prior knowledge of the system. Machine learning methods offer alternative means of model construction: differential equation models can be learnt from data via model discovery using sparse identification of nonlinear dynamics (SINDy). However, SINDy struggles with realistic levels of biological noise and is limited in its ability to incorporate prior knowledge of the system. We propose a data-driven framework for model discovery and model selection using hybrid dynamical systems: partial models containing missing terms. Neural networks are used to approximate the unknown dynamics of a system, enabling the denoising of the data while simultaneously learning the latent dynamics. Simulations from the fitted neural network are then used to infer models using sparse regression. We show, via model selection, that model discovery using hybrid dynamical systems outperforms alternative approaches. We find it possible to infer models correctly up to high levels of biological noise of different types. We demonstrate the potential to learn models from sparse, noisy data in application to a canonical cell state transition using data derived from single-cell transcriptomics. Overall, this approach provides a practical framework for model discovery in biology in cases where data are noisy and sparse, of particular utility when the underlying biological mechanisms are partially but incompletely known. 
    more » « less