skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modulation theory for soliton resonance and Mach reflection
Resonant Y-shaped soliton solutions to the Kadomtsev–Petviashvili II (KPII) equation are modelled as shock solutions to an infinite family of modulation conservation laws. The fully two-dimensional soliton modulation equations, valid in the zero dispersion limit of the KPII equation, are demonstrated to reduce to a one-dimensional system. In this same limit, the rapid transition from the larger Y soliton stem to the two smaller legs limits to a travelling discontinuity. This discontinuity is a multivalued, weak solution satisfying modified Rankine–Hugoniot jump conditions for the one-dimensional modulation equations. These results are applied to analytically describe the dynamics of the Mach reflection problem, V-shaped initial conditions that correspond to a soliton incident upon an inward oblique corner. Modulation theory results show excellent agreement with direct KPII numerical simulation.  more » « less
Award ID(s):
1816934 2009487
PAR ID:
10354225
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume:
478
Issue:
2259
ISSN:
1364-5021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The interaction of an oblique line soliton with a one-dimensional dynamic mean flow is analyzed using the Kadomtsev–Petviashvili II (KPII) equation. Building upon previous studies that examined the transmission or trapping of a soliton by a slowly varying rarefaction or oscillatory dispersive shock wave (DSW) in one space and one time dimension, this paper allows for the incident soliton to approach the changing mean flow at a nonzero oblique angle. By deriving invariant quantities of the soliton–mean flow modulation equations—a system of three (1 + 1)-dimensional quasilinear, hyperbolic equations for the soliton and mean flow parameters—and positing the initial configuration as a Riemann problem in the modulation variables, it is possible to derive quantitative predictions regarding the evolution of the line soliton within the mean flow. It is found that the interaction between an oblique soliton and a changing mean flow leads to several novel features not observed in the (1 + 1)-dimensional reduced problem. Many of these interesting dynamics arise from the unique structure of the modulation equations that are nonstrictly hyperbolic, including a well-defined multivalued solution interpreted as a solution of the (2 + 1)-dimensional soliton–mean modulation equations, in which the soliton interacts with the mean flow and then wraps around to interact with it again. Finally, it is shown that the oblique interactions between solitons and DSW solutions for the mean flow give rise to all three possible types of two-soliton solutions of the KPII equation. The analytical findings are quantitatively supported by direct numerical simulations. 
    more » « less
  2. null (Ed.)
    The dynamics of initially truncated and bent line solitons for the Kadomtsev–Petviashvili (KPII) equation modelling internal and surface gravity waves is analysed using modulation theory. In contrast to previous studies on obliquely interacting solitons that develop from acute incidence angles, this work focuses on initial value problems for the obtuse incidence of two or three partial line solitons, which propagate away from one another. Despite counterpropagation, significant residual soliton interactions are observed with novel physical consequences. The initial value problem for a truncated line soliton – describing the emergence of a quasi-one-dimensional soliton from a wide channel – is shown to be related to the interaction of oblique solitons. Analytical descriptions for the development of weak and strong interactions are obtained in terms of interacting simple wave solutions of modulation equations for the local soliton amplitude and slope. In the weak interaction case, the long-time evolution of truncated and large obtuse angle solitons exhibits a decaying, parabolic wave profile with temporally increasing focal length that asymptotes to a cylindrical Korteweg–de Vries soliton. In contrast, the strong interaction case of slightly obtuse interacting solitons evolves into a steady, one-dimensional line soliton with amplitude reduced by an amount proportional to the incidence slope. This strong interaction is identified with the ‘Mach expansion’ of a soliton with an expansive corner, contrasting with the well-known Mach reflection of a soliton with a compressive corner. Interestingly, the critical angles for Mach expansion and reflection are the same. Numerical simulations of the KPII equation quantitatively support the analytical findings. 
    more » « less
  3. Abstract The Whitham modulation equations for the defocusing nonlinear Schrödinger (NLS) equation in two, three and higher spatial dimensions are derived using a two-phase ansatz for the periodic traveling wave solutions and by period-averaging the conservation laws of the NLS equation. The resulting Whitham modulation equations are written in vector form, which allows one to show that they preserve the rotational invariance of the NLS equation, as well as the invariance with respect to scaling and Galilean transformations, and to immediately generalize the calculations from two spatial dimensions to three. The transformation to Riemann-type variables is described in detail; the harmonic and soliton limits of the Whitham modulation equations are explicitly written down; and the reduction of the Whitham equations to those for the radial NLS equation is explicitly carried out. Finally, the extension of the theory to higher spatial dimensions is briefly outlined. The multidimensional NLS-Whitham equations obtained here may be used to study large amplitude wavetrains in a variety of applications including nonlinear photonics and matter waves. 
    more » « less
  4. Abstract We prove existence, uniqueness and non-negativity of solutions of certain integral equations describing the density of states u ( z ) in the spectral theory of soliton gases for the one dimensional integrable focusing nonlinear Schrödinger equation (fNLS) and for the Korteweg–de Vries (KdV) equation. Our proofs are based on ideas and methods of potential theory. In particular, we show that the minimising (positive) measure for a certain energy functional is absolutely continuous and its density u ( z ) ⩾ 0 solves the required integral equation. In a similar fashion we show that v ( z ), the temporal analog of u ( z ), is the difference of densities of two absolutely continuous measures. Together, the integral equations for u , v represent nonlinear dispersion relation for the fNLS soliton gas. We also discuss smoothness and other properties of the obtained solutions. Finally, we obtain exact solutions of the above integral equations in the case of a KdV condensate and a bound state fNLS condensate. Our results is a step towards a mathematical foundation for the spectral theory of soliton and breather gases, which appeared in work of El and Tovbis (2020 Phys. Rev. E 101 052207). It is expected that the presented ideas and methods will be useful for studying similar classes of integral equation describing, for example, breather gases for the fNLS, as well as soliton gases of various integrable systems. 
    more » « less
  5. Abstract The existence of soliton families in nonparity‐time‐symmetric complex potentials remains poorly understood, especially in two spatial dimensions. In this article, we analytically investigate the bifurcation of soliton families from linear modes in one‐ and two‐dimensional nonlinear Schrödinger equations with localized Wadati‐type nonparity‐time‐symmetric complex potentials. By utilizing the conservation law of the underlying non‐Hamiltonian wave system, we convert the complex soliton equation into a new real system. For this new real system, we perturbatively construct a continuous family of low‐amplitude solitons bifurcating from a linear eigenmode to all orders of the small soliton amplitude. Hence, the emergence of soliton families in these nonparity‐time‐symmetric complex potentials is analytically explained. We also compare these analytically constructed soliton solutions with high‐accuracy numerical solutions in both one and two dimensions, and the asymptotic accuracy of these perturbation solutions is confirmed. 
    more » « less